Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov
Two novel thermophilic and slightly acidophilic strains, Kam940Tand Kam1507b, which shared 99 % 16S rRNA gene sequence identity, were isolated from terrestrial hot springs of the Uzon caldera on the Kamchatka peninsula. Cells of both strains were non-motile, regular cocci. Growth was observed between 55 and 85 °C, with an optimum at 65–70 °C (doubling time, 6.1 h), and at pH 4.5–7.5, with optimum growth at pH 5.5–6.0. The isolates were strictly anaerobic organotrophs and grew on a narrow spectrum of energy-rich substrates, such as beef extract, gelatin, peptone, pyruvate, sucrose and yeast extract, with yields above 107cells ml−1. Sulfate, sulfite, thiosulfate and nitrate added as potential electron acceptors did not stimulate growth when tested with peptone. H2at 100 % in the gas phase inhibited growth on peptone. Glycerol dibiphytanyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl rings were present in the lipid fraction of isolate Kam940T. The G+C content of the genomic DNA of strain Kam940Twas 37 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were archaea of the phylumCrenarchaeota, only distantly related to the cultured members of the classThermoprotei(no more than 89 % identity), and formed an independent lineage adjacent to the ordersDesulfurococcalesandAcidilobalesand clustering only with uncultured clones from hot springs of Yellowstone National Park and Iceland as the closest relatives. On the basis of their phylogenetic position and novel phenotypic features, isolates Kam940Tand Kam1507b are proposed to be assigned to a new genus and species,Fervidicoccus fontisgen. nov., sp. nov. The type strain ofFervidicoccus fontisis strain Kam940T(=DSM 19380T=VKM B-2539T). The phylogenetic data as well as phenotypic properties suggest that the novel crenarchaeotes form the basis of a new family,Fervidicoccaceaefam. nov., and order,Fervidicoccalesord. nov., within the classThermoprotei.