SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Hinrichs

JSON
See as cards

Hinrichs, Kai-Uwe


Publications
4

CitationNamesAbstract
Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction Seitz et al. (2016). The ISME Journal 10 (7) Asgardarchaeota “Altiarchaeota”
Text
Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea Baker et al. (2016). Nature Microbiology 1 (3) Hadarchaeum yellowstonense Ts
Text
Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface Probst et al. (2014). Nature Communications 5 (1) “Altiarchaeum” “Altiarchaeum hamiconexum” “Altiarchaeales”
Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov Perevalova et al. (2010). International Journal of Systematic and Evolutionary Microbiology 60 (9) Fervidicoccales
Text

Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction
Abstract Marine and estuary sediments contain a variety of uncultured archaea whose metabolic and ecological roles are unknown. De novo assembly and binning of high-throughput metagenomic sequences from the sulfate–methane transition zone in estuary sediments resulted in the reconstruction of three partial to near-complete (2.4–3.9 Mb) genomes belonging to a previously unrecognized archaeal group. Phylogenetic analyses of ribosomal RNA genes and ribosomal proteins revealed that this group is distinct from any previously characterized archaea. For this group, found in the White Oak River estuary, and previously registered in sedimentary samples, we propose the name ‘Thorarchaeota’. The Thorarchaeota appear to be capable of acetate production from the degradation of proteins. Interestingly, they also have elemental sulfur and thiosulfate reduction genes suggesting they have an important role in intermediate sulfur cycling. The reconstruction of these genomes from a deeply branched, widespread group expands our understanding of sediment biogeochemistry and the evolutionary history of Archaea.
Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea
AbstractThe subsurface biosphere is largely unexplored and contains a broad diversity of uncultured microbes1. Despite being one of the few prokaryotic lineages that is cosmopolitan in both the terrestrial and marine subsurface2–4, the physiological and ecological roles of SAGMEG (South-African Gold Mine Miscellaneous Euryarchaeal Group) Archaea are unknown. Here, we report the metabolic capabilities of this enigmatic group as inferred from genomic reconstructions. Four high-quality (63–90% complete) genomes were obtained from White Oak River estuary and Yellowstone National Park hot spring sediment metagenomes. Phylogenomic analyses place SAGMEG Archaea as a deeply rooting sister clade of the Thermococci, leading us to propose the name Hadesarchaea for this new Archaeal class. With an estimated genome size of around 1.5 Mbp, the genomes of Hadesarchaea are distinctly streamlined, yet metabolically versatile. They share several physiological mechanisms with strict anaerobic Euryarchaeota. Several metabolic characteristics make them successful in the subsurface, including genes involved in CO and H2 oxidation (or H2 production), with potential coupling to nitrite reduction to ammonia (DNRA). This first glimpse into the metabolic capabilities of these cosmopolitan Archaea suggests they are mediating key geochemical processes and are specialized for survival in the subsurface biosphere.
Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov
Two novel thermophilic and slightly acidophilic strains, Kam940Tand Kam1507b, which shared 99 % 16S rRNA gene sequence identity, were isolated from terrestrial hot springs of the Uzon caldera on the Kamchatka peninsula. Cells of both strains were non-motile, regular cocci. Growth was observed between 55 and 85 °C, with an optimum at 65–70 °C (doubling time, 6.1 h), and at pH 4.5–7.5, with optimum growth at pH 5.5–6.0. The isolates were strictly anaerobic organotrophs and grew on a narrow spectrum of energy-rich substrates, such as beef extract, gelatin, peptone, pyruvate, sucrose and yeast extract, with yields above 107cells ml−1. Sulfate, sulfite, thiosulfate and nitrate added as potential electron acceptors did not stimulate growth when tested with peptone. H2at 100 % in the gas phase inhibited growth on peptone. Glycerol dibiphytanyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl rings were present in the lipid fraction of isolate Kam940T. The G+C content of the genomic DNA of strain Kam940Twas 37 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were archaea of the phylumCrenarchaeota, only distantly related to the cultured members of the classThermoprotei(no more than 89 % identity), and formed an independent lineage adjacent to the ordersDesulfurococcalesandAcidilobalesand clustering only with uncultured clones from hot springs of Yellowstone National Park and Iceland as the closest relatives. On the basis of their phylogenetic position and novel phenotypic features, isolates Kam940Tand Kam1507b are proposed to be assigned to a new genus and species,Fervidicoccus fontisgen. nov., sp. nov. The type strain ofFervidicoccus fontisis strain Kam940T(=DSM 19380T=VKM B-2539T). The phylogenetic data as well as phenotypic properties suggest that the novel crenarchaeotes form the basis of a new family,Fervidicoccaceaefam. nov., and order,Fervidicoccalesord. nov., within the classThermoprotei.
Search