Hugenholtz, Philip


Publications
34

Proposal of Patescibacterium danicum gen. nov., sp. nov. in the ubiquitous bacterial phylum Patescibacteriota phyl. nov

Citation
Dutkiewicz et al. (2025). ISME Communications 5 (1)
Names
Patescibacterium Patescibacteriaceae Patescibacteriales Patescibacteriia Patescibacteriota Ca. Patescibacteria Patescibacterium danicum Ts
Abstract
Abstract Candidatus Patescibacteria is a diverse bacterial phylum that is notable for members with ultrasmall cell size, reduced genomes, limited metabolic capabilities, and dependence on other prokaryotic hosts. Despite the prevalence of the name Ca. Patescibacteria in the scientific literature, it is not officially recognized under the International Code of Nomenclature of Prokaryotes and lacks a nomenclatural type. Here, we rectify this situation by describing two closely relat
Text

Recovery of highly contiguous genomes from complex terrestrial habitats reveals over 15,000 novel prokaryotic species and expands characterization of soil and sediment microbial communities

Citation
Sereika et al. (2024).
Names
Abstract
AbstractGenomes are fundamental to understanding microbial ecology and evolution. The emergence of high-throughput, long-read DNA sequencing has enabled recovery of microbial genomes from environmental samples at scale. However, expanding the microbial genome catalogue of soils and sediments has been challenging due to the enormous complexity of these environments. Here, we performed deep, long-read Nanopore sequencing of 154 soil and sediment samples collected across Denmark and through an opti
Text

A long-awaited taxogenomic investigation of the family Halomonadaceae

Citation
de la Haba et al. (2023). Frontiers in Microbiology 14
Names
“Vreelandella chakariensis CH40”
Abstract
The familyHalomonadaceaeis the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey’s Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreo
Text

Draft genome sequence of two “Candidatus Intestinicoccus colisanans” strains isolated from faeces of healthy humans

Citation
Zhou et al. (2023). BMC Research Notes 16 (1)
Names
Intestinicoccus colisanans Ts Intestinicoccus
Abstract
Abstract Objectives In order to provide a better insight into the functional capacity of the human gut microbiome, we isolated a novel bacterium, “Candidatus Intestinicoccus colisanans” gen. nov. sp. nov., and performed whole genome sequencing. This study will provide new insights into the functional potential of this bacterium and its role in modulating host health and well-being. We expect that this data resource will be useful in providing additional insight in
Text

Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes

Citation
Chuvochina et al. (2023). FEMS Microbiology Letters 370
Names
279 Names
Abstract
Abstract The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above
Text

SeqCode: a nomenclatural code for prokaryotes described from sequence data

Citation
Hedlund et al. (2022). Nature Microbiology
Names
Kryptonium mobile Kryptoniaceae Kryptoniia Kryptoniales
Abstract
AbstractMost prokaryotes are not available as pure cultures and therefore ineligible for naming under the rules and recommendations of the International Code of Nomenclature of Prokaryotes (ICNP). Here we summarize the development of the SeqCode, a code of nomenclature under which genome sequences serve as nomenclatural types. This code enables valid publication of names of prokaryotes based upon isolate genome, metagenome-assembled genome or single-amplified genome sequences. Otherwise, it is s
Text

Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages

Citation
Sun et al. (2021). ISME Communications 1 (1)
Names
15 Names
Abstract
Abstract Asgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the
Text

Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

Citation
Ji et al. (2021). The ISME Journal 15 (9)
Names
55 Names
Abstract
Abstract Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H2-oxidation to fix CO2 through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremioba
Text