Publications
4364

Sort by date names
Browse by authors subjects journals

Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities

Citation
Afrizal et al. (2022).
Names
Abstract
Microbiome research is hampered by the fact that many bacteria are still unknown and by the lack of publicly available isolates. Fundamental and clinical research is in need of comprehensive and well-curated repositories of cultured bacteria from the intestine of mammalian hosts. In this work, we expanded the mouse intestinal bacterial collection (www.dsmz.de/miBC) to 212 strains, all publicly available and taxonomically described. This includes the study of strain-level diversity, small-sized b
Text

Integrated Analysis of the miRNAome and Transcriptome Reveals miRNA–mRNA Regulatory Networks in Catharanthus roseus Through Cuscuta campestris-Mediated Infection With “Candidatus Liberibacter asiaticus”

Citation
Zeng et al. (2022). Frontiers in Microbiology 13
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus caused by the Gram-negative phloem-limited bacterium “Candidatus Liberibacter asiaticus” (CLas). It can be transmitted by the Asian citrus psyllid “Diaphorina citri,” by grafting, and by the holoparasitic dodder. In this study, the non-natural host periwinkle (Catharanthus roseus) was infected via dodder (Cuscuta campestris) from CLas-infected citrus plants, and the asymptomatic leaves (AS) were subjected to transcriptomic and
Text

A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria

Citation
Benzerara et al. (2022). Genome Biology and Evolution 14 (3)
Names
“Synechococcus calcipolaris”
Abstract
Abstract Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elu
Text

A survey of ‘Candidatus Phytoplasma pyri’ isolates in the Czech Republic based on imp gene genotyping

Citation
Valentová et al. (2022). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50 (1)
Names
Ca. Phytoplasma Ca. Phytoplasma mali Ca. Phytoplasma pyri
Abstract
‘Candidatus Phytoplasma spp.’ are pathogenic bacteria that infect many plant species. ‘Candidatus Phytoplasma pyri’, one of the members of the 16SrX group causes pear decline disease that adversely affects pear crops. To describe the prevalence of ‘Ca. P. pyri’ genotypes in the Czech Republic, 143 pear samples were collected from 41 locations including commercial orchards as well as trees along roads. Phytoplasma was detected by PCR in 115 samples, and it was possible to determine imp gene genot
Text

Not Just a Cycle: Three gab Genes Enable the Non-Cyclic Flux Toward Succinate via GABA Shunt in ‘Candidatus Liberibacter asiaticus’–Infected Citrus

Citation
Nehela, Killiny (2022). Molecular Plant-Microbe Interactions® 35 (3)
Names
Ca. Liberibacter asiaticus
Abstract
Although the mitochondria retain all required enzymes for an intact tricarboxylic acid (TCA) cycle, plants might shift the cyclic flux from the TCA cycle to an alternative noncyclic pathway via γ-aminobutyric acid (GABA) shunt under specific physiological conditions. We hypothesize that several genes may ease this noncyclic flux and contribute to the citrus response to the phytopathogenic bacterium ‘Candidatus Liberibacter asiaticus’, the causal agent of Huanglongbing in citrus. To test this hy
Text

Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms

Citation
Orellana et al. (2022). The ISME Journal 16 (3)
Names
“Fucivorax forsetii” “Fucivorax” “Mariakkermansia forsetii” “Mariakkermansia” Chordibacter forsetii Ts Seribacter sulfatis Ts
Abstract
Abstract Marine algae annually sequester petagrams of carbon dioxide into polysaccharides, which are a central metabolic fuel for marine carbon cycling. Diatom microalgae produce sulfated polysaccharides containing methyl pentoses that are challenging to degrade for bacteria compared to other monomers, implicating these sugars as a potential carbon sink. Free-living bacteria occurring in phytoplankton blooms that specialise on consuming microalgal sugars, containing fucose and rha
Text