Publications
4366

Sort by date names
Browse by authors subjects journals

Methylacidiphilum caldifontis gen. nov., sp. nov., a thermoacidophilic methane-oxidizing bacterium from an acidic geothermal environment, and descriptions of the family Methylacidiphilaceae fam. nov. and order Methylacidiphilales ord. nov

Citation
Awala et al. (2023). International Journal of Systematic and Evolutionary Microbiology 73 (10)
Names
Methylacidiphilales Methylacidiphilaceae
Abstract
Strain IT6T, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud–water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation. Strain IT6T had three complete pmoCAB operons encoding particulate methane
Text

Complete genome sequence of “Candidatus Phytoplasma sacchari” obtained using a filter-based DNA enrichment method and Nanopore sequencing

Citation
Zhang et al. (2023). Frontiers in Microbiology 14
Names
Ca. Phytoplasma sacchari
Abstract
Phytoplasmas are phloem-limited plant pathogens, such as sugarcane white leaf (SCWL) phytoplasma, which are responsible for heavy economic losses to the sugarcane industry. Characterization of phytoplasmas has been limited because they cannot be cultured in vitro. However, with the advent of genome sequencing, different aspects of phytoplasmas are being investigated. In this study, we developed a DNA enrichment method for sugarcane white leaf (SCWL) phytoplasma, evaluated the effect of DNA enric
Text

Effects of insecticides and repellents on the spread of ‘Candidatus Phytoplasma solani’ under laboratory and field conditions

Citation
Riedle-Bauer, Brader (2023). Journal of Plant Diseases and Protection 130 (5)
Names
Ca. Phytoplasma solani
Abstract
AbstractRecent outbreaks of ‘Candidatus Phytoplasma solani’ resulted in severe losses in potatoes, vegetable crops and grapevines in certain regions of Austria and constituted a major challenge for seed potato production. Therefore, the effects of various insecticides and insect deterrents on pathogen spread were studied both in laboratory and field experiments from 2018 to 2021. In laboratory transmission experiments, field captured Hyalesthes obsoletus were caged on differently treated Cathara
Text

Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’

Citation
Zhang et al. (2023). Nature Communications 14 (1)
Names
Ca. Methanoperedens nitroreducens
Abstract
AbstractAnaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by ‘Candidatus Methanoperedens nitroreducens’, an ANME acclimated to
Text