SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Rabiee

JSON
See as cards

Rabiee, Hesamoddin


Publications
2

CitationNamesAbstract
Anaerobic oxidation of methane coupled to reductive immobilization of hexavalent chromium by “Candidatus Methanoperedens” Wang et al. (2024). Journal of Hazardous Materials 480 Ca. Methanoperedens
Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ Zhang et al. (2023). Nature Communications 14 (1) Ca. Methanoperedens nitroreducens
Text

Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’
AbstractAnaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by ‘Candidatus Methanoperedens nitroreducens’, an ANME acclimated to nitrate reduction. Ferrous iron-targeted fluorescent assays, metatranscriptomics, and single-cell imaging suggest that ‘Ca. M. nitroreducens’ uses surface-localized redox-active cytochromes for metal reduction. Electrochemical and Raman spectroscopic analyses also support the involvement of c-type cytochrome-mediated EET for electrode reduction. Furthermore, several genes encoding menaquinone cytochrome type-c oxidoreductases and extracellular MHCs are differentially expressed when different electron acceptors are used.
Search