SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Zehr

JSON
See as cards

Zehr, Jonathan P.


Publications
7

CitationNamesAbstract
What's in a name? The case of cyanobacteria Garcia‐Pichel et al. (2020). Journal of Phycology 56 (1) Cyanobacteriota
Text
The Transcriptional Cycle Is Suited to Daytime N 2 Fixation in the Unicellular Cyanobacterium “ Candidatus Atelocyanobacterium thalassa” (UCYN-A) Muñoz-Marín et al. (2019). mBio 10 (1) Ca. Atelocyanobacterium thalassa
Text
UCYN‐A3, a newly characterized open ocean sublineage of the symbiotic N 2 ‐fixing cyanobacterium Candidatus Atelocyanobacterium thalassa Cornejo‐Castillo et al. (2019). Environmental Microbiology 21 (1) Ca. Atelocyanobacterium thalassa
Text
A transcriptional cycle suited to daytime N2 fixation in the unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) Muñoz-Marin et al. (2018). Ca. Atelocyanobacterium thalassa
Text
Distributions and Abundances of Sublineages of the N2-Fixing Cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon Henke et al. (2018). Frontiers in Microbiology 9 Ca. Atelocyanobacterium thalassa
Distinct ecological niches of marine symbiotic N2‐fixing cyanobacterium Candidatus Atelocyanobacterium thalassa sublineages Turk‐Kubo et al. (2017). Journal of Phycology 53 (2) Ca. Atelocyanobacterium thalassa
Text
Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga Thompson et al. (2012). Science 337 (6101) “Atelocyanobacterium thalassae”
Text

What's in a name? The case of cyanobacteria
A redefinition of the cyanobacterial lineage has been proposed based on phylogenomic analysis of distantly related nonphototrophic lineages. We define Cyanobacteria here as “Organisms in the domain bacteria able to carry out oxygenic photosynthesis with water as an electron donor and to reduce carbon dioxide as a source of carbon, or those secondarily evolved from such organisms.”
The Transcriptional Cycle Is Suited to Daytime N 2 Fixation in the Unicellular Cyanobacterium “ Candidatus Atelocyanobacterium thalassa” (UCYN-A)
The symbiotic N 2 -fixing cyanobacterium UCYN-A, which is closely related to Braarudosphaera bigelowii , and its eukaryotic algal host have been shown to be globally distributed and important in open-ocean N 2 fixation. These unique cyanobacteria have reduced metabolic capabilities, even lacking genes for oxygenic photosynthesis and carbon fixation. Cyanobacteria generally use energy from photosynthesis for nitrogen fixation but require mechanisms for avoiding inactivation of the oxygen-sensitive nitrogenase enzyme by ambient oxygen (O 2 ) or the O 2 evolved through photosynthesis. This study showed that symbiosis between the N 2 -fixing cyanobacterium UCYN-A and its eukaryotic algal host has led to adaptation of its daily gene expression pattern in order to enable daytime aerobic N 2 fixation, which is likely more energetically efficient than fixing N 2 at night, as found in other unicellular marine cyanobacteria.
UCYN‐A3, a newly characterized open ocean sublineage of the symbiotic N 2 ‐fixing cyanobacterium Candidatus Atelocyanobacterium thalassa
Summary The symbiotic unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN‐A) is one of the most abundant and widespread nitrogen (N 2 )‐fixing cyanobacteria in the ocean. Although it remains uncultivated, multiple sublineages have been detected based on partial nitrogenase ( nifH ) gene sequences, including the four most commonly detected sublineages UCYN‐A1, UCYN‐A2, UCYN‐A3 and UCYN‐A4. However, very little is known about UCYN‐A3 beyond the nifH sequences from nifH gene diversity surveys. In this study, single cell sorting, DNA sequencing, qPCR and CARD‐FISH assays revealed discrepancies involving the identification of sublineages, which led to new information on the diversity of the UCYN‐A symbiosis. 16S rRNA and nifH gene sequencing on single sorted cells allowed us to identify the 16S rRNA gene of the uncharacterized UCYN‐A3 sublineage. We designed new CARD‐FISH probes that allowed us to distinguish and observe UCYN‐A2 in a coastal location (SIO Pier; San Diego) and UCYN‐A3 in an open ocean location (Station ALOHA; Hawaii). Moreover, we reconstructed about 13% of the UCYN‐A3 genome from Tara Oceans metagenomic data. Finally, our findings unveil the UCYN‐A3 symbiosis in open ocean waters suggesting that the different UCYN‐A sublineages are distributed along different size fractions of the plankton defined by the cell‐size ranges of their prymnesiophyte hosts.
A transcriptional cycle suited to daytime N2 fixation in the unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A)
AbstractThe symbiosis between a marine alga and a N2-fixing cyanobacterium (UCYN-A) is geographically widespread in the oceans and is important in the marine N cycle. UCYN-A is uncultivated, and is an unusual unicellular cyanobacterium because it lacks many metabolic functions, including oxygenic photosynthesis and carbon fixation, which are typical in cyanobacteria. It is now presumed to be an obligate symbiont of haptophytes closely related to Braarudosphaera bigelowii. N2-fìxing cyanobacteria use different strategies to avoid inhibition of N2 fixation by the oxygen evolved in photosynthesis. Most unicellular cyanobacteria temporally separate the two incompatible activities by fixing N2 only at night, but surprisingly UCYN-A appears to fix N2 during the day. The goal of this study was to determine how the unicellular UCYN-A coordinates N2 fixation and general metabolism compared to other marine cyanobacteria. We found that UCYN-A has distinct daily cycles of many genes despite the fact that it lacks two of the three circadian clock genes found in most cyanobacteria. We also found that transcription patterns in UCYN-A are most similar to marine cyanobacteria that are capable of aerobic N2 fixation in the light such as Trichodesmium and heterocyst-forming cyanobacteria, rather than Crocosphaera or Cyanothece species, which are more closely related to unicellular marine cyanobacteria evolutionarily. Our findings suggest that the symbiotic interaction has resulted in a shift of transcriptional regulation to coordinate UCYN-A metabolism with the phototrophic eukaryotic host, thus allowing efficient coupling of N2 fixation (by the cyanobacterium) to the energy obtained from photosynthesis (by the eukaryotic unicellular alga) in the light.ImportanceThe symbiotic N2-fixing cyanobacterium UCYN-A and its eukaryotic algal host, which is closely related to Braarudosphaera bigelowii, have been shown to be globally distributed and important in open ocean N2 fixation. These unique cyanobacteria have reduced metabolic capabilities, even lacking genes for oxygenic photosynthesis and carbon fixation. Cyanobacteria generally use energy from photosynthesis for nitrogen fixation, but require mechanisms for avoiding inactivation of the oxygen-sensitive nitrogenase enzyme by ambient oxygen (O2) or the O2 evolved through photosynthesis. This study shows that the symbiosis between the N2-fixing cyanobacterium UCYN-A and its eukaryotic algal host has led to adaptation of its daily gene expression pattern in order to enable daytime aerobic N2 fixation, which is likely more energetically efficient than fixing N2 at night, as in other unicellular marine cyanobacteria.
Distinct ecological niches of marine symbiotic N2‐fixing cyanobacterium Candidatus Atelocyanobacterium thalassa sublineages
A recently described symbiosis between the metabolically streamlined nitrogen‐fixing cyanobacterium UCYN‐A and a single‐celled eukaryote prymnesiophyte alga is widely distributed throughout tropical and subtropical marine waters, and is thought to contribute significantly to nitrogen fixation in these regions. Several UCYN‐A sublineages have been defined based on UCYN‐A nitrogenase (nifH) sequences. Due to the low abundances of UCYN‐A in the global oceans, currently existing molecular techniques are limited for detecting and quantifying these organisms. A targeted approach is needed to adequately characterize the diversity of this important marine cyanobacterium, and to advance understanding of its ecological importance. We present findings on the distribution of UCYN‐A sublineages based on high throughput sequencing of UCYN‐A nifH PCR amplicons from 78 samples distributed throughout many major oceanic provinces. These UCYN‐A nifH fragments were used to define oligotypes, alternative taxonomic units defined by nucleotide positions with high variability. The data set was dominated by a single oligotype associated with the UCYN‐A1 sublineage, consistent with previous observations of relatively high abundances in tropical and subtropical regions. However, this analysis also revealed for the first time the widespread distribution of the UCYN‐A3 sublineage in oligotrophic waters. Furthermore, distinct assemblages of UCYN‐A oligotypes were found in oligotrophic and coastally influenced waters. This unique data set provides a framework for determining the environmental controls on UCYN‐A distributions and the ecological importance of the different sublineages.
Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga
Fixing on a Marine Partnership Nitrogen fixation by microorganisms determines the productivity of the biosphere. Although plants photosynthesize by virtue of the ancient incorporation of cyanobacteria to form chloroplasts, no equivalent endosymbiotic event has occurred for nitrogen fixation. Nevertheless, in terrestrial environments, nitrogen-fixing symbioses between bacteria and plants, for example, are common. Thompson et al. (p. 1546 ) noticed that the ubiquitous marine cyanobacterium UCYN-A has an unusually streamlined genome lacking components of the photosynthetic machinery and central carbon metabolism—all suggestive of being an obligate symbiont. By using gentle filtration methods for raw seawater, a tiny eukaryote partner for UCYN-A of less than 3-µm in diameter was discovered. The bacterium sits on the cell wall of this calcifying picoeukaryote, donating fixed nitrogen and receiving fixed carbon in return.
Search