SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Zhang

JSON
See as cards

Zhang, Chao


Publications
3

CitationNamesAbstract
“ Candidatus Liberibacter asiaticus” Secretes Nonclassically Secreted Proteins That Suppress Host Hypersensitive Cell Death and Induce Expression of Plant Pathogenesis-Related Proteins Du et al. (2021). Applied and Environmental Microbiology 87 (8) Ca. Liberibacter asiaticus
Text
A Novel ‘Candidatus Liberibacter asiaticus’-Encoded Sec-Dependent Secretory Protein Suppresses Programmed Cell Death in Nicotiana benthamiana Zhang et al. (2019). International Journal of Molecular Sciences 20 (22) Ca. Liberibacter asiaticus
Text
Nuclear Import of a Secreted “Candidatus Liberibacter asiaticus” Protein is Temperature Dependent and Contributes to Pathogenicity in Nicotiana benthamiana Liu et al. (2019). Frontiers in Microbiology 10 Ca. Liberibacter asiaticus

“ Candidatus Liberibacter asiaticus” Secretes Nonclassically Secreted Proteins That Suppress Host Hypersensitive Cell Death and Induce Expression of Plant Pathogenesis-Related Proteins
In this study, we present a combined computational and experimental methodology that allows a rapid and efficient identification of the ncSecPs from bacteria, in particular the unculturable bacteria like CLas. Meanwhile, the study determined that a number of CLas ncSecPs suppressed HR-based cell death, and thus indicated a novel role for the bacterial ncSecPs in extracellular milieu.
A Novel ‘Candidatus Liberibacter asiaticus’-Encoded Sec-Dependent Secretory Protein Suppresses Programmed Cell Death in Nicotiana benthamiana
‘Candidatus Liberibacter asiaticus’ (CLas) is one of the causal agents of citrus Huanglongbing (HLB), a bacterial disease of citrus trees that greatly reduces fruit yield and quality. CLas strains produce an array of currently uncharacterized Sec-dependent secretory proteins. In this study, the conserved chromosomally encoded protein CLIBASIA_03875 was identified as a novel Sec-dependent secreted protein. We show that CLIBASIA_03875 contains a putative Sec- secretion signal peptide (SP), a 29 amino acid residue located at the N-terminus, with a mature protein (m3875) of 22 amino acids found to localize in multiple subcellular components of the leaf epidermal cells of Nicotiana benthamiana. When overexpressed via a Potato virus X (PVX)-based expression vector in N. benthamiana, m3875 suppressed programmed cell death (PCD) and the H2O2 accumulation triggered by the pro-apoptotic mouse protein BAX and the Phytophthora infestans elicitin INF1. Overexpression also resulted in a phenotype of dwarfing, leaf deformation and mosaics, suggesting that m3875 has roles in plant immune response, growth, and development. Substitution mutagenesis of the charged amino acid (D7, R9, R11, and K22) with alanine within m3875 did not recover the phenotypes for PCD and normal growth. In addition, the transiently overexpressed m3875 regulated the transcriptional levels of N. benthamiana orthologs of CNGCs (cyclic nucleotide-gated channels), BI-1 (Bax-inhibitor 1), and WRKY33 that are involved in plant defense mechanisms. To our knowledge, m3875 is the first PCD suppressor identified from CLas. Studying the function of this protein provides insight as to how CLas attenuates the host immune responses to proliferate and cause Huanglongbing disease in citrus plants.
Search