Canadian Journal of Microbiology


Publications
3

Candidatus Thiovulum sp. strain imperiosus: the largest free-living Epsilonproteobacteraeota Thiovulum strain lives in a marine mangrove environment

Citation
Sylvestre et al. (2022). Canadian Journal of Microbiology 68 (1)
Names
Ca. Thiovulum imperiosus
Abstract
A large (47.75 ± 3.56 µm in diameter) Thiovulum bacterial strain forming white veils is described from a marine mangrove ecosystem. High sulfide concentrations (up to 8 mM of H2S) were measured on sunken organic matter (wood/bone debris) under laboratory conditions. This sulfur-oxidizing bacterium colonized the organic matter, forming a white veil. According to conventional scanning electron microscope (SEM) observations, bacterial cells are ovoid and slightly motile by numerous small flagella

Ultrastructural and molecular characterization of endosymbionts of the reed beetle genusMacroplea(Chrysomelidae, Donaciinae), and proposal of “CandidatusMacropleicola appendiculatae” and “CandidatusMacropleicola muticae”

Citation
Kölsch et al. (2009). Canadian Journal of Microbiology 55 (11)
Names
Ca. Macropleicola appendiculatae Ca. Macropleicola muticae
Abstract
Intracellular bacterial symbionts are known from various insect groups, particularly from those feeding on unbalanced diets, where the bacteria provide essential nutrients to the host. In the case of reed beetles (Coleoptera: Chrysomelidae, Donaciinae), however, the endosymbionts appear to be associated with specialized “glands” that secrete a material used for the beetles’ unusual water-tight cocoon. These glands were discovered over a century ago, but the bacteria they contain have yet to be c

Characterization of putative membrane protein genes of the ‘Candidatus Phytoplasma asteris’, chrysanthemum yellows isolate

Citation
Galetto et al. (2008). Canadian Journal of Microbiology 54 (5)
Names
Ca. Phytoplasma asteris
Abstract
To characterize potentially important surface-exposed proteins of the phytoplasma causing chrysanthemum yellows (CY), new primers were designed based on the conserved regions of 3 membrane protein genes of the completely sequenced onion yellows and aster yellows witches’ broom phytoplasmas and were used to amplify CY DNA. The CY genes secY, amp, and artI, encoding the protein translocase subunit SecY, the antigenic membrane protein Amp and the arginine transporter ArtI, respectively, were clone