mSystems


Publications
18

Genomes of the “ Candidatus Actinomarinales” Order: Highly Streamlined Marine Epipelagic Actinobacteria

Citation
López-Pérez et al. (2020). mSystems 5 (6)
Names
“Actinomarinales”
Abstract
Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge.

Reclassification of the Taxonomic Framework of Orders Cellvibrionales, Oceanospirillales, Pseudomonadales , and Alteromonadales in Class Gammaproteobacteria through Phylogenomic Tree Analysis

Citation
Liao et al. (2020). mSystems 5 (5)
Names
Kangiellaceae Kangiellales Litoricolaceae
Abstract
The orders Cellvibrionales , Oceanospirillales , and Pseudomonadales , as three major orders of the largest bacterial class, Gammaproteobacteria , play important roles in various ecosystems as the keystone taxa of microbiomes, but their evolutionary relationship is currently polyphyletic and chaotic. Here, we constructed a bac120 tree and core-genome tree and calculated the amino acid ide

Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated Thaumarchaeota

Citation
Zhang et al. (2019). mSystems 4 (4)
Names
“Cenoporarchaeum stylissae” “Cenoporarchaeum”
Abstract
Sponges represent ecologically important models to understand the evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumarchaeota are commonly found in sponges, but their potential adaptations to a host-associated lifestyle are largely unknown. Here, we present three novel sponge-associated thaumarchaeal species and compare their genomic and predicted functional features with those of closely related free-living counterparts. We foun

Integrated Omic Analyses Provide Evidence that a “ Candidatus Accumulibacter phosphatis” Strain Performs Denitrification under Microaerobic Conditions

Citation
Camejo et al. (2019). mSystems 4 (1)
Names
“Accumulibacter phosphatis”
Abstract
“ Candidatus Accumulibacter phosphatis” is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evid

Increased Biosynthetic Gene Dosage in a Genome-Reduced Defensive Bacterial Symbiont

Citation
Lopera et al. (2017). mSystems 2 (6)
Names
“Didemniditutus” “Didemniditutus mandelae”
Abstract
Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we desc

Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium “ Candidatus Nitrospira nitrosa”

Citation
Camejo et al. (2017). mSystems 2 (5)
Names
Ca. Nitrospira nitrosa
Abstract
Nitrospira -like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of

Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by “ Candidatus Tenderia electrophaga”

Citation
Eddie et al. (2017). mSystems 2 (2)
Names
Tenderia electrophaga Ts
Abstract
Bacteria that directly use electrodes as metabolic electron donors (biocathodes) have been proposed for applications ranging from microbial electrosynthesis to advanced bioelectronics for cellular communication with machines. However, just as we understand very little about oxidation of analogous natural insoluble electron donors, such as iron oxide, the organisms and extracellular electron transfer (EET) pathways underlying the electrode-cell direct electron transfer processes are

Proteome Remodeling in Response to Sulfur Limitation in “ Candidatus Pelagibacter ubique”

Citation
Smith et al. (2016). mSystems 1 (4)
Names
Ca. Pelagibacter ubique
Abstract
“ Ca . Pelagibacter ubique” is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquis