Publications
3886

Sort by date names
Browse by authors subjects journals

Draft Genome Sequence of “ Candidatus Hepatoplasma crinochetorum” Ps, a Bacterial Symbiont in the Hepatopancreas of the Terrestrial Isopod Porcellio scaber

Citation
Collingro et al. (2015). Genome Announcements 3 (4)
Names
Hepatoplasma crinochetorum Ts
Abstract
ABSTRACT “ Candidatus Hepatoplasma crinochetorum” Ps is an extracellular symbiont residing in the hepatopancreas of the terrestrial isopod Porcellio scaber . Its genome is highly similar to that of the close relative “ Ca. Hepatoplasma crinochetorum” Av from Armadillidium vulgare . However, instead of a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system

Unraveling the Etiology of North American Grapevine Yellows (NAGY): Novel NAGY Phytoplasma Sequevars Related to ‘Candidatus Phytoplasma pruni’

Citation
Davis et al. (2015). Plant Disease 99 (8)
Names
Ca. Phytoplasma pruni
Abstract
North American grapevine yellows (NAGY) disease has sometimes been attributed to infection of Vitis vinifera L. by Prunus X-disease phytoplasma (‘Candidatus Phytoplasma pruni’) but this attribution may not be fully adequate. In this study, phytoplasma strains related to ‘Ca. Phytoplasma pruni’ were found in NAGY-diseased grapevines in Maryland, Pennsylvania, Virginia, Ohio, Missouri, and New York State. Based on restriction fragment length polymorphism analysis of 16S ribosomal RNA gene (16S rD

Seasonal Variation in Populations of ‘Candidatus Liberibacter asiaticus’ in Citrus Trees in Paraná State, Brazil

Citation
Sauer et al. (2015). Plant Disease 99 (8)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is considered one of the most destructive diseases of citrus because the plants rapidly become unproductive, enter a decline, and eventually die. HLB is caused by the phloem-limited bacterium ‘Candidatus Liberibacter’ spp. The objective of this study was to evaluate seasonal variation of the in planta population of ‘Ca. Liberibacter asiaticus’ in the foliage of citrus trees in Brazil using real-time polymerase chain reaction (qPCR). Eleven plants (naturally infected, then sc