SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Xie

JSON
See as cards

Xie, Yuan-Guo


Publications
2

CitationNamesAbstract
Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria Luo et al. (2024). The ISME Journal 18 (1) “UBA164”
Text
Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior Wang et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (5) Amycolatopsis anabasis
Text

Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria
Abstract Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.
Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior
A novel endophytic actinobacterium, designated strain EGI 650086T, was isolated from the roots of Anabasis elatior (C.A.Mey.) Schischk. collected in Xinjiang, north-west China. The taxonomic position of the strain was investigated using a polyphasic taxonomic approach. Growth occurred at 15–40 °C, pH 6.0–8.0 and in the presence of 0–6 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence and concatenation of 22 protein marker genes revealed that strain EGI 650086T formed a monophyletic clade within the genus Amycolatopsis and shared the highest sequence similarities with Amycolatopsis nigrescens JCM 14717T (97.1 %) and Amycolatopsis sacchari DSM 44468T (97.0 %). Sequence similarities with type strains of other species of the genus Amycolatopsis were less than 97.0 %. The average nucleotide identity and DNA–DNA hybridization values between strain EGI 650086T and the reference strains were 78.1–79.8 % and 22.1–23.0 %, respectively. The genome of strain EGI 650086T was 10.9 Mb, with a DNA G+C content of 70.1 mol%. The diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. The major whole-cell sugars contained arabinose, galactose, glucose and ribose. The predominant menaquinones were MK-9 (H4) and MK-9 (H2). Major fatty acids were iso-C16 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The polar lipid profile of strain EGI 650086T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, two unknown phospholipids, an unknown glycolipid and an unknown lipid. Polyphasic taxonomic characteristics indicated that strain EGI 650086T represents a novel species of the genus Amycolatopsis , for which the name Amycolatopsis anabasis sp. nov. is proposed. The type strain is EGI 650086T (=KCTC 49044T=CGMCC 4.7188T).
Search