SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Lee

JSON
See as cards

Lee, Janey


Publications
3

CitationNamesAbstract
Differential Expression of Core Metabolic Functions in Candidatus Altiarchaeum Inhabiting Distinct Subsurface Ecosystems Esser et al. (2025). Environmental Microbiology Reports 17 (3) “Huberarchaeum crystalense” Ca. Altiarchaeum crystalense “Altiarchaeum” Ca. Altiarchaea
Differential expression of core metabolic functions inCandidatusAltiarchaeum inhabiting distinct subsurface ecosystems Esser et al. (2023). “Altiarchaeum” Ca. Altiarchaeum crystalense
Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium Džunková et al. (2023). Microbiome 11 (1) Doriopsillibacter californiensis Ts Doriopsillibacter Perseibacteraceae

Differential Expression of Core Metabolic Functions in Candidatus Altiarchaeum Inhabiting Distinct Subsurface Ecosystems
ABSTRACTCandidatus Altiarchaea are widespread across aquatic subsurface ecosystems and possess a highly conserved core genome, yet adaptations of this core genome to different biotic and abiotic factors based on gene expression remain unknown. Here, we investigated the metatranscriptome of two Ca. Altiarchaeum populations that thrive in two substantially different subsurface ecosystems. In Crystal Geyser, a high‐CO2 groundwater system in the USA, Ca. Altiarchaeum crystalense co‐occurs with the symbiont Ca. Huberiarchaeum crystalense, while in the Muehlbacher sulfidic spring in Germany, an artesian spring high in sulfide concentration, Ca. A. hamiconexum is heavily infected with viruses. We here mapped metatranscriptome reads against their genomes to analyse the in situ expression profile of their core genomes. Out of 537 shared gene clusters, 331 were functionally annotated and 130 differed significantly in expression between the two sites. Main differences were related to genes involved in cell defence like CRISPR‐Cas, virus defence, replication, transcription and energy and carbon metabolism. Our results demonstrate that altiarchaeal populations in the subsurface are likely adapted to their environment while influenced by other biological entities that tamper with their core metabolism. We consequently posit that viruses and symbiotic interactions can be major energy sinks for organisms in the deep biosphere.
Differential expression of core metabolic functions inCandidatusAltiarchaeum inhabiting distinct subsurface ecosystems
AbstractCandidatusAltiarchaea are widespread across aquatic subsurface ecosystems and possess a highly conserved core genome, yet adaptations of this core genome to different biotic and abiotic factors based on gene expression remain unknown. Here, we investigated the metatranscriptome of twoCa. Altiarchaeum populations that thrive in two substantially different subsurface ecosystems. In Crystal Geyser, a high-CO2groundwater system in the USA,Ca. Altiarchaeum crystalense co-occurs with the symbiontCa. Huberiarchaeum crystalense, while in the Muehlbacher sulfidic spring in Germany, an artesian spring high in sulfide concentration,Ca. A. hamiconexum is heavily infected with viruses. We here mapped metatranscriptome reads against their genomes to analyze thein situexpression profile of their core genomes. Out of 537 shared gene clusters, 331 were functionally annotated and 130 differed significantly in expression between the two sites. Main differences were related to genes involved in cell defense like CRISPR-Cas, virus defense, replication, and transcription as well as energy and carbon metabolism. Our results demonstrate that altiarchaeal populations in the subsurface are likely adapted to their environment while influenced by other biological entities that tamper with their core metabolism. We consequently posit that viruses and symbiotic interactions can be major energy sinks for organisms in the deep biosphere.(Originality-Significance StatementOrganisms of the uncultivated phylumCa. Altiarchaeota are globally widespread and fulfill essential roles in carbon cycling,e.g., carbon fixation in the continental subsurface. Here, we show that the transcriptional activity of organisms in the continental subsurface differ significantly depending on the geological and microbial setting of the ecosystem explaining many of the previously observed physiological traits of this organism group.)
Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium
Abstract Background Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthetic gene clusters; however, their in vivo functionality is not guaranteed which limits further exploration of their pharmaceutical or industrial potential. To overcome these challenges, we used a fluorescent pantetheine probe, which produces a fluorescent CoA-analog employed in biosynthesis of secondary metabolites, to label and capture bacterial symbionts actively producing these compounds in the mantle of the nudibranch Doriopsilla fulva. Results We recovered the genome of Candidatus Doriopsillibacter californiensis from the Ca. Tethybacterales order, an uncultured lineage of sponge symbionts not found in nudibranchs previously. It forms part of the core skin microbiome of D. fulva and is nearly absent in its internal organs. We showed that crude extracts of D. fulva contained secondary metabolites that were consistent with the presence of a beta-lactone encoded in Ca. D. californiensis genome. Beta-lactones represent an underexplored group of secondary metabolites with pharmaceutical potential that have not been reported in nudibranchs previously. Conclusions Altogether, this study shows how probe-based, targeted sorting approaches can capture bacterial symbionts producing secondary metabolites in vivo.
Search