SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Sharp

JSON
See as cards

Sharp, Koty H


Publications
3

CitationNamesAbstract
Correction: Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov Klinges et al. (2020). The ISME Journal 14 (1) Ca. Aquarickettsia rohweri
Text
Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov Klinges et al. (2019). The ISME Journal 13 (12) Ca. Aquarickettsia rohweri Ca. Aquarickettsia
Text
Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina Sharp et al. (2007). The ISME Journal 1 (8) “Endobugula sertula”
Text

Correction: Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov
Abstract An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov
Abstract Bacterial symbionts are integral to the health and homeostasis of invertebrate hosts. Notably, members of the Rickettsiales genus Wolbachia influence several aspects of the fitness and evolution of their terrestrial hosts, but few analogous partnerships have been found in marine systems. We report here the genome, phylogenetics, and biogeography of a ubiquitous and novel Rickettsiales species that primarily associates with marine organisms. We previously showed that this bacterium was found in scleractinian corals, responds to nutrient exposure, and is associated with reduced host growth and increased mortality. This bacterium, like other Rickettsiales, has a reduced genome indicative of a parasitic lifestyle. Phylogenetic analysis places this Rickettsiales within a new genus we define as “Candidatus Aquarickettsia.” Using data from the Earth Microbiome Project and SRA databases, we also demonstrate that members of “Ca. Aquarickettsia” are found globally in dozens of invertebrate lineages. The coral-associated “Candidatus A. rohweri” is the first finished genome in this new clade. “Ca. A. rohweri” lacks genes to synthesize most sugars and amino acids but possesses several genes linked to pathogenicity including Tlc, an antiporter that exchanges host ATP for ADP, and a complete Type IV secretion system. Despite its inability to metabolize nitrogen, “Ca. A. rohweri” possesses the NtrY-NtrX two-component system involved in sensing and responding to extracellular nitrogen. Given these data, along with visualization of the parasite in host tissues, we hypothesize that “Ca. A. rohweri” reduces coral health by consuming host nutrients and energy, thus weakening and eventually killing host cells. Last, we hypothesize that nutrient enrichment, which is increasingly common on coral reefs, encourages unrestricted growth of “Ca. A. rohweri” in its host by providing abundant N-rich metabolites to be scavenged.
Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina
Abstract ‘Candidatus Endobugula sertula,’ the uncultivated γ-proteobacterial symbiont of the marine bryozoan Bugula neritina, synthesizes bryostatins, complex polyketides that render B. neritina larvae unpalatable to predators. Although the symbiosis is well described, little is known about the locations of ‘E. sertula’ or the bryostatins throughout larval settlement, metamorphosis and early development. In this study, we simultaneously localized ‘E. sertula’ and the bryostatins in multiple stages of the B. neritina life cycle, using a novel bryostatin detection method based on its known ability to bind mammalian protein kinase C. Our results suggest that the bryostatins are deposited onto the exterior of B. neritina larvae during embryonic development, persist on the larval surface throughout metamorphosis and are shed prior to cuticle formation. During metamorphosis, ‘E. sertula’ remains adhered to the larval pallial epithelium and is incorporated into the preancestrula cystid tissue layer, which ultimately develops into a bud and gives rise to the next zooid in the colony. Colocalization of bryostatin signal with aggregates of ‘E. sertula’ in buds of ancestrulae suggested new synthesis of bryostatins in ancestrulae. In adult B. neritina colonies, symbiont microcolonies were observed in the funicular cords of rhizoids, which likely result in asexual transmission of ‘E. sertula’ to regenerated colonies. Furthermore, bryostatin signal was detected on the surface of the rhizoids of adult B. neritina colonies. Through simultaneous localization of the bryostatins and the ‘E. sertula,’ we determined how ‘E. sertula’ is transmitted, and identified shifts in bryostatin localization throughout the life cycle of the host B. neritina.
Search