SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Orphan

JSON
See as cards

Orphan, Victoria J


Publications
2

CitationNamesAbstract
Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily Speth et al. (2022). The ISME Journal 16 (7) Tharpellaceae Tharpella Tharpella aukensis Ts
Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps Skennerton et al. (2016). The ISME Journal 10 (11) “Izemoplasmatales” “Izemoplasmataceae” “Izemoplasma”

Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily
Abstract Hydrothermal vents have been key to our understanding of the limits of life, and the metabolic and phylogenetic diversity of thermophilic organisms. Here we used environmental metagenomics combined with analysis of physicochemical data and 16S rRNA gene amplicons to characterize the sediment-hosted microorganisms at the recently discovered Auka vents in the Gulf of California. We recovered 325 metagenome assembled genomes (MAGs) representing 54 phyla, over 30% of those currently known, showing the microbial community in Auka hydrothermal sediments is highly diverse. 16S rRNA gene amplicon screening of 224 sediment samples across the vent field indicates that the MAGs retrieved from a single site are representative of the microbial community in the vent field sediments. Metabolic reconstruction of a vent-specific, deeply branching clade within the Desulfobacterota suggests these organisms metabolize sulfur using novel octaheme cytochrome-c proteins related to hydroxylamine oxidoreductase. Community-wide comparison between Auka MAGs and MAGs from Guaymas Basin revealed a remarkable 20% species-level overlap, suggestive of long-distance species transfer over 400 km and subsequent sediment colonization. Optimal growth temperature prediction on the Auka MAGs, and thousands of reference genomes, shows that thermophily is a trait that has evolved frequently. Taken together, our Auka vent field results offer new perspectives on our understanding of hydrothermal vent microbiology.
Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps
Abstract Tenericutes are a unique class of bacteria that lack a cell wall and are typically parasites or commensals of eukaryotic hosts. Environmental 16S rDNA surveys have identified a number of tenericute clades in diverse environments, introducing the possibility that these Tenericutes may represent non-host-associated, free-living microorganisms. Metagenomic sequencing of deep-sea methane seep sediments resulted in the assembly of two genomes from a Tenericutes-affiliated clade currently known as ‘NB1-n’ (SILVA taxonomy) or ‘RF3’ (Greengenes taxonomy). Metabolic reconstruction revealed that, like cultured members of the Mollicutes, these ‘NB1-n’ representatives lack a tricarboxylic acid cycle and instead use anaerobic fermentation of simple sugars for substrate level phosphorylation. Notably, the genomes also contained a number of unique metabolic features including hydrogenases and a simplified electron transport chain containing an RNF complex, cytochrome bd oxidase and complex I. On the basis of the metabolic potential predicted from the annotated genomes, we devised an anaerobic enrichment media that stimulated the growth of these Tenericutes at 10 °C, resulting in a mixed culture where these organisms represented ~60% of the total cells by targeted fluorescence in situ hybridization (FISH). Visual identification by FISH confirmed these organisms were not directly associated with Eukaryotes and electron cryomicroscopy of cells in the enrichment culture confirmed an ultrastructure consistent with the defining phenotypic property of Tenericutes, with a single membrane and no cell wall. On the basis of their unique gene content, phylogenetic placement and ultrastructure, we propose these organisms represent a novel class within the Tenericutes, and suggest the names Candidatus ‘Izimaplasma sp. HR1’ and Candidatus ‘Izimaplasma sp. HR2’ for the two genome representatives.
Search