SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Highet

JSON
See as cards

Highet, Fiona


Publications
3

CitationNamesAbstract
Chromosome-Level Assemblies of Three Candidatus Liberibacter solanacearum Vectors: Dyspersa apicalis (Förster, 1848), Dyspersa pallida (Burckhardt, 1986), and Trioza urticae (Linnaeus, 1758) (Hemiptera: Psylloidea) Heaven et al. (2025). Genome Biology and Evolution 17 (6) Ca. Carsonella ruddii “Liberibacter solanacearum”
Text
Chromosome-level Assemblies of Three Candidatus Liberibacter solanacearum Vectors: Dyspersa apicalis, Dyspersa pallida, and Trioza urticae (Hemiptera: Psylloidea) Heaven et al. (2024). Ca. Carsonella ruddii “Liberibacter solanacearum”
Text
‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psylloidea: Aphalaridae) Sumner-Kalkun et al. (2020). Scientific Reports 10 (1) “Liberibacter solanacearum”
Text

Chromosome-Level Assemblies of Three Candidatus Liberibacter solanacearum Vectors: Dyspersa apicalis (Förster, 1848), Dyspersa pallida (Burckhardt, 1986), and Trioza urticae (Linnaeus, 1758) (Hemiptera: Psylloidea)
Abstract Psyllids are major vectors of plant diseases, including Candidatus Liberibacter solanacearum (CLso), the bacterial agent associated with “zebra chip” disease in potatoes and “carrot yellows” disease in carrot. Despite their agricultural significance, there is limited knowledge on the genome structure and genetic diversity of psyllids. In this study, we provide chromosome-level genome assemblies for three psyllid species known to transmit CLso: Dyspersa apicalis (carrot psyllid), Dyspersa pallida, and Trioza urticae (nettle psyllid). As D. apicalis is recognized as the primary vector of CLso by carrot growers in Northern Europe, we also resequenced populations of this species from Finland, Norway, and Austria. Genome assemblies were constructed using PacBio HiFi and Hi–C sequencing data, yielding genome sizes of 594.01 Mbp for D. apicalis; 587.80 Mbp for D. pallida; and 655.58 Mbp for T. urticae. Over 90% of sequences anchored into 13 pseudo-chromosomes per species. D. apicalis and D. pallida assemblies exhibited high completeness, capturing over 92% of conserved Hemiptera single-copy orthologs. Furthermore, we identified sequences of the primary psyllid symbiont, Candidatus Carsonella ruddii, in all three species. Gene annotations were produced for each assembly: 17,932 unique protein-coding genes were predicted for D. apicalis; 18,292 for D. pallida; and 16,007 for T. urticae. We observed significant expansions in gene families, particularly those linked to potential insecticide detoxification, within the Dyspersa lineage. Resequencing also revealed the existence of multiple subpopulations of D. apicalis across Europe. These high-quality genome resources will support future research on genome evolution, insect–plant–pest interactions, and disease management strategies.
Chromosome-level Assemblies of Three Candidatus Liberibacter solanacearum Vectors: Dyspersa apicalis, Dyspersa pallida, and Trioza urticae (Hemiptera: Psylloidea)
Psyllids are major vectors of plant diseases, including Candidatus Liberibacter solanacearum (CLso), the bacterial agent associated with 'zebra chip' disease in potatoes and 'carrot yellows' disease in carrot. Despite their agricultural significance, there is limited knowledge on the genome structure and genetic diversity of psyllids. In this study, we provide chromosome-level genome assemblies for three psyllid species known to transmit CLso: Dyspersa apicalis (carrot psyllid), Dyspersa pallida, and Trioza urticae (nettle psyllid). As D. apicalis is recognised as the primary vector of CLso by carrot growers in Northern Europe, we also resequenced populations of this species from Finland, Norway, and Austria. Genome assemblies were constructed using PacBio HiFi and Hi-C sequencing data, yielding genome sizes of: 594.01 Mbp for D. apicalis; 587.80 Mbp for D. pallida; and 655.58 Mbp for T. urticae. Over 90% of sequences anchored into 13 pseudo-chromosomes per species. The assemblies for D. apicalis and D. pallida exhibited high completeness, capturing over 92% of conserved Hemiptera single-copy orthologues, as assessed by Benchmarking Universal Single-Copy Orthologues (BUSCO) analysis. Furthermore, we identified sequences of the primary psyllid symbiont, Candidatus Carsonella ruddii, in all three species. Comparative genomic analyses demonstrated synteny with other psyllid species. Notably, we observed significant expansions in gene families, particularly those linked to potential insecticide detoxification, within the Dyspersa lineage. Resequencing efforts also revealed the existence of multiple subpopulations of D. apicalis across Europe. These high-quality genome resources will support future research on genome evolution, insect-plant-pest interactions, and strategies for disease management.
‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psylloidea: Aphalaridae)
AbstractThe phloem limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso) is associated with disease in Solanaceous and Apiaceous crops. This bacterium has previously been found in the UK in Trioza anthrisci, but its impact on UK crops is unknown. Psyllid and Lso diversity and distribution among fields across the major carrot growing areas of Scotland were assessed using real-time PCR and DNA barcoding techniques. Four Lso haplotypes were found: C, U, and two novel haplotypes. Lso haplotype C was also found in a small percentage of asymptomatic carrot plants (9.34%, n = 139) from a field in Milnathort where known vectors of this haplotype were not found. This is the first report of Lso in cultivated carrot growing in the UK and raises concern for the carrot and potato growing industry regarding the potential spread of new and existing Lso haplotypes into crops. Trioza anthrisci was found present only in sites in Elgin, Moray with 100% of individuals harbouring Lso haplotype C. Lso haplotype U was found at all sites infecting Trioza urticae and at some sites infecting Urtica dioica with 77.55% and 24.37% average infection, respectively. The two novel haplotypes were found in Craspedolepta nebulosa and Craspedolepta subpunctata and named Cras1 and Cras2. This is the first report of Lso in psyllids from the Aphalaridae. These new haplotypes were most closely related to Lso haplotype H recently found in carrot and parsnip. Lso was also detected in several weed plants surrounding carrot and parsnip fields. These included two Apiaceous species Aegropodium podagraria (hap undetermined) and Anthriscus sylvestris (hap C); one Galium sp. (Rubiaceae) (hap undetermined); and Chenopodium album (Amaranthaceae) (hap undetermined).
Search