General Chemistry


Publications
57

Recovery of Lutacidiplasmatales archaeal order genomes suggests convergent evolution in Thermoplasmatota

Citation
Sheridan et al. (2022). Nature Communications 13 (1)
Names
“Lutacidiplasmatales” “Lutacidiplasma silvani” “Lutacidiplasma” “Lutacidiplasmataceae”
Abstract
AbstractThe Terrestrial Miscellaneous Euryarchaeota Group has been identified in various environments, and the single genome investigated thus far suggests that these archaea are anaerobic sulfite reducers. We assemble 35 new genomes from this group that, based on genome analysis, appear to possess aerobic and facultative anaerobic lifestyles and may oxidise rather than reduce sulfite. We propose naming this order (representing 16 genera) “Lutacidiplasmatales” due to their occurrence in various
Text

An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea

Citation
Buessecker et al. (2022). Nature Communications 13 (1)
Names
16 Names
Abstract
AbstractTrace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineageCaldarchaeales(syn.Aigarchaeota),Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) ofW. gerlachensisencodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxi
Text

Genomic diversity across the Rickettsia and ‘Candidatus Megaira’ genera and proposal of genus status for the Torix group

Citation
Davison et al. (2022). Nature Communications 13 (1)
Names
Ca. Megaira “Tisiphia”
Abstract
AbstractMembers of the bacterial genusRickettsiawere originally identified as causative agents of vector-borne diseases in mammals. However, manyRickettsiaspecies are arthropod symbionts and close relatives of ‘CandidatusMegaira’, which are symbiotic associates of microeukaryotes. Here, we clarify the evolutionary relationships between these organisms by assembling 26 genomes ofRickettsiaspecies from understudied groups, including the Torix group, and two genomes of ‘Ca. Megaira’ from various in
Text

Bacterial filamentation as a mechanism for cell-to-cell spread within an animal host

Citation
Tran et al. (2022). Nature Communications 13 (1)
Names
“Bordetella atropi”
Abstract
AbstractIntracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae.
Text