Horticulture


Publications
183

Influence of ‘Candidatus Liberibacter solanacearum’ infection on carrot root weight in Germany

Citation
Sauer et al. (2024). European Journal of Plant Pathology 169 (2)
Names
“Liberibacter solanacearum”
Abstract
AbstractInfection with the bacterium ‘Candidatus Liberibacter solanacearum’ (Lso) is suspected to cause severe damage in carrot leading to high carrot weight loss. This study investigates three main aspects: (i) whether there is a reduction of carrot root weight under field conditions due to Lso infection; (ii) the correlation between Lso infection rate in carrot plants and occurrence of the psyllid Trioza apicalis as the known vector for Lso in carrot, and (iii) the comparison between symptoms
Text

Towards the completion of Koch's postulates for the citrus huanglongbing bacterium, Candidatus Liberibacter asiaticus

Citation
Zheng et al. (2024). Horticulture Research 11 (3)
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Candidatus Liberibacter asiaticus (Las) is one of the causal agents of huanglongbing (HLB), the most devastating disease of citrus worldwide. Due to the intracellular lifestyle and significant genome reduction, culturing Las in vitro has proven to be extremely challenging. In this study, we optimized growth conditions and developed a semi-selective medium based on the results of nutritional and antibiotic screening assays. Using these optimized conditions, we were able to
Text

Response of Citrus Germplasm Seedlings to Candidatus Liberibacter Asiaticus Infection under Controlled Greenhouse Conditions

Citation
Bisi et al. (2024). HortScience 59 (3)
Names
Liberibacter
Abstract
Huanglongbing (HLB) is a major disease of citrus associated with phloem-limited bacteria in the genus Candidatus Liberibacter that affects all known citrus species and relatives, with many commercial cultivars being greatly damaged. Testing cultivar tolerance to HLB in field conditions is difficult because of the erratic spread of the bacteria, scion and rootstock interactions, and influence of many biotic and abiotic factors on the tree response to the disease. This study aimed to validate the
Text

ABA-CsABI5-CsCalS11 module upregulates Callose deposition of citrus infected with Candidatus Liberibacter asiaticus

Citation
Yao et al. (2024). Horticulture Research 11 (2)
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Huanglongbing (HLB) primarily caused by Candidatus Liberibacter asiaticus (CLas) has been threatening citrus production globally. Under HLB conditions, an excessive accumulation of the polysaccharide callose in citrus phloem occurs, leading to phloem blockage and starch accumulation in leaves. The callose production is controlled by callose synthases (CalS), which have multiple members within plants. However, the knowledge of callose production in the citrus upon infectio
Text

Effects of insecticides and repellents on the spread of ‘Candidatus Phytoplasma solani’ under laboratory and field conditions

Citation
Riedle-Bauer, Brader (2023). Journal of Plant Diseases and Protection 130 (5)
Names
Ca. Phytoplasma solani
Abstract
AbstractRecent outbreaks of ‘Candidatus Phytoplasma solani’ resulted in severe losses in potatoes, vegetable crops and grapevines in certain regions of Austria and constituted a major challenge for seed potato production. Therefore, the effects of various insecticides and insect deterrents on pathogen spread were studied both in laboratory and field experiments from 2018 to 2021. In laboratory transmission experiments, field captured Hyalesthes obsoletus were caged on differently treated Cathara
Text

An endolysin gene fromCandidatusLiberibacter asiaticus confers dual resistance to huanglongbing and citrus canker

Citation
Xu et al. (2023). Horticulture Research 10 (9)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractThe most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacter
Text