Agronomy and Crop Science


Publications
763

Molecular and morphological characterisation of Xiphinema americanum-group species (Nematoda: Dorylaimida) from California, USA, and other regions, and co-evolution of bacteria from the genus Candidatus Xiphinematobacter with nematodes

Citation
Orlando et al. (2016). Nematology 18 (9)
Names
Ca. Xiphinematobacter
Abstract
The Xiphinema americanum-group is a large species complex containing more than 50 nematode species. They are economically important because they are vectors of nepoviruses. The species differentiation of X. americanum-group is problematic because the species share similar morphological characters. In the present study we collected nematode samples from different locations in the USA, Italy and Russia. Six valid species, X. americanum s. str., X. brevicolle, X. californicum, X. pachtaicum, X. riv

‘Candidatus Liberibacter solanacearum’ Titers in and Infection Effects on Potato Tuber Chemistry of Promising Germplasm Exhibiting Tolerance to Zebra Chip Disease

Citation
Wallis et al. (2015). Phytopathology® 105 (12)
Names
“Liberibacter solanacearum”
Abstract
Long-term sustainable management of zebra chip (ZC) disease of potato requires development of tolerant or resistant germplasm. To this end, 283 potato varieties and breeding clones were infected with the ZC putative causal agent ‘Candidatus Liberibacter solanacearum’ (Lso) by potato psyllid vector inoculations in 2010, 2011, 2012, and 2013. Potato germplasm was then examined for development of fresh and fried ZC symptoms. Over multiple years 29 breeding clones exhibited little to no symptoms in

Differentiation of ‘Candidatus Phytoplasma cynodontis’ Based on 16S rRNA and groEL Genes and Identification of a New Subgroup, 16SrXIV-C

Citation
Mitrović et al. (2015). Plant Disease 99 (11)
Names
Ca. Phytoplasma cynodontis
Abstract
‘Candidatus Phytoplasma cynodontis’ is widespread in bermudagrass and has only been found in monocotyledonous plants. Molecular studies carried out on strains collected in Italy, Serbia, and Albania enabled verification of molecular variability in the 16S ribosomal RNA (rRNA) gene. Based on restriction fragment length polymorphism and sequence analyses, the strains from Serbia were clearly differentiated from all others and assigned to a new ribosomal DNA (rDNA) subgroup designated as 16SrXIV-C