Microbiology


Publications
891

Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in “ Candidatus Bathyarchaeia”

Citation
Qi et al. (2021). mSystems 6 (4)
Names
Bathyarchaeia
Abstract
Ca . Bathyarchaeia MAGs from terrestrial hot spring habitats are poorly revealed, though they have been studied extensively in marine ecosystems.

CandidatusChloroploca mongolica’ sp. nov. a new mesophilic filamentous anoxygenic phototrophic bacterium

Citation
Bryantseva et al. (2021). FEMS Microbiology Letters 368 (16)
Names
Chloroploca asiatica Ts Chloroploca mongolica
Abstract
ABSTRACTA mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5−14 g/L and pH 8.0−9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contained chlorosomes.
Text

The Effect of the Anticipated Nuclear Localization Sequence of ‘Candidatus Phytoplasma mali’ SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor

Citation
Strohmayer et al. (2021). Microorganisms 9 (8)
Names
Ca. Phytoplasma mali
Abstract
SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requ
Text

Physiology of the Nitrite-Oxidizing Bacterium Candidatus Nitrotoga sp. CP45 Enriched From a Colorado River

Citation
Lantz et al. (2021). Frontiers in Microbiology 12
Names
Ca. Nitrotoga
Abstract
Nitrogen cycling microbes, including nitrite-oxidizing bacteria (NOB), perform critical ecosystem functions that help mitigate anthropogenic stresses and maintain ecosystem health. Activity of these beneficial nitrogen cycling microbes is dictated in part by the microorganisms’ response to physicochemical conditions, such as temperature, pH, and nutrient availability. NOB from the newly described Candidatus Nitrotoga genus have been detected in a wide range of habitats across the globe, yet only
Text

Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes

Citation
Martin et al. (2021). Frontiers in Microbiology 12
Names
Methylomirabilis Ca. Methanoperedenaceae Ca. Methylumidiphilus
Abstract
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water
Text

‘Candidatus Liberibacter asiaticus’ Multimeric LotP Mediates Citrus sinensis Defense Response Activation

Citation
Merli et al. (2021). Frontiers in Microbiology 12
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ is known as the most pathogenic organism associated with citrus greening disease. Since its publicized emergence in Florida in 2005, ‘Ca. L. asiaticus’ remains unculturable. Currently, a limited number of potential disease effectors have been identified through in silico analysis. Therefore, these potential effectors remain poorly characterized and do not fully explain the complexity of symptoms observed in citrus trees infected with ‘Ca. L. asiaticus.’ LotP h
Text

Metabolic potential of the imperfect denitrifier Candidatus Desulfobacillus denitrificans in an anammox bioreactor

Citation
Okubo, Takami (2021). MicrobiologyOpen 10 (4)
Names
Ca. Desulfobacillus denitrificans
Abstract
AbstractThe imperfect denitrifier, Candidatus (Ca.) Desulfobacillus denitrificans, which lacks nitric oxide (NO) reductase, frequently appears in anammox bioreactors depending on the operating conditions. We used genomic and metatranscriptomic analyses to evaluate the metabolic potential of Ca. D. denitrificans and deduce its functional relationships to anammox bacteria (i.e., Ca. Brocadia pituitae). Although Ca. D. denitrificans is hypothesized to supply NO to Ca. B. pituitae as a byproduct of
Text

Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient‐poor Antarctic soils

Citation
Montgomery et al. (2021). Environmental Microbiology 23 (8)
Names
15 Names
Abstract
Summary Candidatus Dormibacterota is an uncultured bacterial phylum found predominantly in soil that is present in high abundances within cold desert soils. Here, we interrogate nine metagenome‐assembled genomes ( MAGs ), including six new MAGs derived from soil metagenomes obtained from two eastern Antarctic sites. Phylogenomic and taxonomic analyses reveale
Text

Identification and Genomic Characterization of Two Previously Unknown Magnetotactic Nitrospirae

Citation
Zhang et al. (2021). Frontiers in Microbiology 12
Names
Ca. Magnetoacidotolerus dajiuhuensis Ca. Magnetobacterium cryptolimnobacter Ca. Magnetomicrobium cryptolimnococcus
Abstract
Magnetotactic bacteria (MTB) are a group of microbes that biomineralize membrane-bound, nanosized magnetite (Fe3O4), and/or greigite (Fe3S4) crystals in intracellular magnetic organelle magnetosomes. MTB belonging to the Nitrospirae phylum can form up to several hundreds of Fe3O4 magnetosome crystals and dozens of sulfur globules in a single cell. These MTB are widespread in aquatic environments and sometimes account for a significant proportion of microbial biomass near the oxycline, linking th
Text

‘Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov., an endosymbiotic bacterium associated with nematode species of the genus Xiphinema (Nematoda, Longidoridae)

Citation
Palomares-Rius et al. (2021). International Journal of Systematic and Evolutionary Microbiology 71 (7)
Names
Ca. Glomeribacter gigasporarum “Xiphinematincola” “Xiphinematincola pachtaicus”
Abstract
An intracellular bacterium, strain IAST, was observed to infect several species of the plant-parasitic nematode genus Xiphinema (Xiphinema astaregiense, Xiphinema incertum, Xiphinema madeirense, Xiphinema pachtaicum, Xiphinema parapachydermum and Xiphinema vallense). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAST was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts
Text