Microbiology


Publications
891

SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter

Citation
Landry et al. (2017). mBio 8 (2)
Names
“Monstramariaceae” “Monstramariales” “Monstramaria”
Abstract
ABSTRACT Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including s
Text

Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

Citation
Sauder et al. (2017). The ISME Journal 11 (5)
Names
Ca. Nitrosocosmicus exaquare
Abstract
Abstract Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario
Text

Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by “CandidatusTenderia electrophaga”

Citation
Eddie et al. (2017). mSystems 2 (2)
Names
Tenderia electrophaga Ts
Abstract
Bacteria that directly use electrodes as metabolic electron donors (biocathodes) have been proposed for applications ranging from microbial electrosynthesis to advanced bioelectronics for cellular communication with machines. However, just as we understand very little about oxidation of analogous natural insoluble electron donors, such as iron oxide, the organisms and extracellular electron transfer (EET) pathways underlying the electrode-cell direct electron transfer processes are almost comple
Text