Marshall, Ian P. G.


Publications
4

Genomic characterization of the bacterial phylum Candidatus Effluviviacota, a cosmopolitan member of the global seep microbiome

Citation
Su et al. (2024). mBio 15 (8)
Names
Ca. Effluvibates Ca. Effluviviacota Ca. Effluvivivax
Abstract
ABSTRACT The microbial communities of marine seep sediments contain unexplored physiological and phylogenetic diversity. Here, we examined 30 bacterial metagenome-assembled genomes (MAGs) from cold seeps in the South China Sea, the Indian Ocean, the Scotian Basin, and the Gulf of Mexico, as well as from deep-sea hydrothermal sediments in the Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct
Text

Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov

Citation
Geelhoed et al. (2023). Microbiology Spectrum 11 (5)
Names
Electrothrix gigas Electronema Electrothrix Electrothrix communis Ts Electrothrix arhusiensis
Abstract
ABSTRACT Bacterial cells can vary greatly in size, from a few hundred nanometers to hundreds of micrometers in diameter. Filamentous cable bacteria also display substantial size differences, with filament diameters ranging from 0.4 to 8 µm. We analyzed the genomes of cable bacterium filaments from 11 coastal environments of which the resulting 23 new genomes represent 10 novel species-level clades of Candidatus Electrothrix and two clades that putat
Text

Persistent flocks of diverse motile bacteria in long-term incubations of electron-conducting cable bacteria, Candidatus Electronema aureum

Citation
Lustermans et al. (2023). Frontiers in Microbiology 14
Names
Electronema aureum Ts
Abstract
Cable bacteria are centimeters-long filamentous bacteria that oxidize sulfide in anoxic sediment layers and reduce oxygen at the oxic-anoxic interface, connecting these reactions via electron transport. The ubiquitous cable bacteria have a major impact on sediment geochemistry and microbial communities. This includes diverse bacteria swimming around cable bacteria as dense flocks in the anoxic zone, where the cable bacteria act as chemotactic attractant. We hypothesized that flocking only appear
Text