Satoh, Hisashi


Publications
9

Minisyncoccus archaeiphilus gen. nov., sp. nov., a mesophilic, obligate parasitic bacterium and proposal of Minisyncoccaceae fam. nov., Minisyncoccales ord. nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. formerly referred to as Candidatus Patescibacteria or candidate phyla radiation

Citation
Nakajima et al. (2025). International Journal of Systematic and Evolutionary Microbiology 75 (2)
Names
Minisyncoccota Minisyncoccia Minisyncoccales Minisyncoccaceae Minisyncoccus Minisyncoccus archaeiphilus T Patescibacteriota
Abstract
In the domain Bacteria, one of the largest, most diverse and environmentally ubiquitous phylogenetic groups, Candidatus Patescibacteria (also known as candidate phyla radiation/CPR), remains poorly characterized, leaving a major knowledge gap in microbial ecology. We recently discovered a novel cross-domain symbiosis between Ca. Patescibacteria and Archaea in highly purified enrichment cultures and proposed Candidatus taxa for the characterized species, including Ca. Minisyncoccus archaeophilus

Microscopic and metatranscriptomic analyses revealed unique cross-domain parasitism between phylum Candidatus Patescibacteria/candidate phyla radiation and methanogenic archaea in anaerobic ecosystems

Citation
Kuroda et al. (2024). mBio 15 (3)
Names
Ca. Patescibacteria
Abstract
ABSTRACT To verify whether members of the phylum Candidatus Patescibacteria parasitize archaea, we applied cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses on the Patescibacteria-enriched cultures derived from a methanogenic bioreactor. Amendment of cultures with exogenous methanogenic archaea, acetate, amino acids, and nucleoside monophosphates increased the relative abundance of

Microscopic and metatranscriptomic analyses revealed unique cross-domain symbiosis betweenCandidatusPatescibacteria/candidate phyla radiation (CPR) and methanogenic archaea in anaerobic ecosystems

Citation
Kuroda et al. (2023).
Names
“Paceibacteria” Ca. Patescibacteria “Yanofskyibacteriota”
Abstract
AbstractTo verify the parasitic lifestyle ofCandidatusPatescibacteria in the enrichment cultures derived from a methanogenic bioreactor, we applied multifaceted approaches combining cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses. Cultivation experiments with the addition of exogenous methanogenic archaea with acetate, amino acids, and nucleoside monophosphates and 16S rRNA gene sequencing confirmed the increase in the relative abundance ofCa. Patescibacter

Draft Genome Sequence of an Anaerobic Ammonium-Oxidizing Bacterium, “ Candidatus Brocadia sinica”

Citation
Oshiki et al. (2015). Genome Announcements 3 (2)
Names
Ca. Brocadia sinica
Abstract
ABSTRACT A draft genome sequence of an anaerobic ammonium-oxidizing (anammox) bacterium, “ Candidatus Brocadia sinica,” was determined by pyrosequencing and by screening a fosmid library. A 4.07-Mb genome sequence comprising 3 contigs was assembled, in which 3,912 gene-coding regions, 47 tRNAs, and a single rrn operon were annotated.

Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’

Citation
Oshiki et al. (2011). Microbiology 157 (6)
Names
Ca. Brocadia sinica
Abstract
The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m−3day−1. The anammox bacteria were identified as representing ‘CandidatusBrocadia sinica’ on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation