Nielsen, Per H


Publications
7

Proposal of Patescibacterium danicum gen. nov., sp. nov. in the ubiquitous bacterial phylum Patescibacteriota phyl. nov

Citation
Dutkiewicz et al. (2025). ISME Communications 5 (1)
Names
Patescibacterium Patescibacteriaceae Patescibacteriales Patescibacteriia Patescibacteriota Ca. Patescibacteria Patescibacterium danicum Ts
Abstract
Abstract Candidatus Patescibacteria is a diverse bacterial phylum that is notable for members with ultrasmall cell size, reduced genomes, limited metabolic capabilities, and dependence on other prokaryotic hosts. Despite the prevalence of the name Ca. Patescibacteria in the scientific literature, it is not officially recognized under the International Code of Nomenclature of Prokaryotes and lacks a nomenclatural type. Here, we rectify this situation by describing two closely relat
Text

Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2021). The ISME Journal 15 (12)
Names
Ca. Dechloromonas phosphoritropha Ca. Dechloromonas phosphorivorans
Abstract
Abstract Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species world
Text

Correction: Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

Citation
Sauder et al. (2020). The ISME Journal 14 (9)
Names
Ca. Nitrosocosmicus exaquare
Abstract
Abstract An amendment to this paper has been published and can be accessed via a link at the top of the paper.

PeatlandAcidobacteriawith a dissimilatory sulfur metabolism

Citation
Hausmann et al. (2018). The ISME Journal 12 (7)
Names
“Sulfuripaludibacter” “Sulfuritelmatobacter kueseliae” Sulfuritelmatomonas Sulfuritelmatomonas gaucii Ts “Sulfuritelmatobacter”
Abstract
AbstractSulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, apr
Text

Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

Citation
Sauder et al. (2017). The ISME Journal 11 (5)
Names
Ca. Nitrosocosmicus exaquare
Abstract
Abstract Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario
Text

Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity

Citation
McIlroy et al. (2014). The ISME Journal 8 (3)
Names
“Competibacter denitrificans” “Contendibacter odensensis” Plasticicumulans
Abstract
Abstract The glycogen-accumulating organism (GAO) ‘Candidatus Competibacter’ (Competibacter) uses aerobically stored glycogen to enable anaerobic carbon uptake, which is subsequently stored as polyhydroxyalkanoates (PHAs). This biphasic metabolism is key for the Competibacter to survive under the cyclic anaerobic-‘feast’: aerobic-‘famine’ regime of enhanced biological phosphorus removal (EBPR) wastewater treatment systems. As they do not contribute to phosphorus (P) removal, but c
Text