Deng, Xiaoling


Publications
40

Genomic Diversity of Microviridae Phage CLasMV1 in “Candidatus Liberibacter asiaticus”

Citation
Fang et al. (2025). Phytopathology®
Names
Ca. Liberibacter asiaticus
Abstract
A Microviridae phage CLasMV1, was recently identified in “Candidatus Liberibacter asiaticus” (CLas), the bacterium associated with citrus Huanglongbing (HLB). The CLasMV1 strain GDHZ11D (CP045566) exhibited a circular genome of 8,869 bp containing eight open reading frames (ORFs). Phages of CLas play crucial roles in regulating bacterial population diversity that have potential use for HLB control. However, knowledge of CLasMV1 population diversity is currently limited. In this study, 1,520 CLa

Metabolites induced by citrus tristeza virus and ‘Candidatus Liberibacter asiaticus’ influence the feeding behavior of Diaphorina citri: an electrical penetration graph and LC–MS/MS study

Citation
Zhang et al. (2025). Phytopathology Research 7 (1)
Names
Ca. Liberibacter asiaticus Liberibacter
Abstract
Abstract Citrus Huanglongbing and Citrus tristeza are two diseases that affect the citrus industry worldwide. The pathogens causing these diseases are the phloem-limited bacteria ‘Candidatus Liberibacter spp.’ (mainly Ca. L. asiaticus, CLas) and citrus tristeza virus (CTV). We recently found that both CLas and CTV could be acquired and retained by the Asian citrus psyllid Diaphorina citri. However, the mechanism through which CLas and CTV interact with the insect vectors and plant host

Genomic Analysis of ‘Candidatus Liberibacter africanus’ Strain from Zimbabwe Reveals Unique Virulence and Prophage Characteristics Compared with ‘Ca. L. asiaticus’

Citation
Zheng et al. (2025). Plant Disease
Names
“Liberibacter solanacearum” Ca. Liberibacter asiaticus Ca. Liberibacter africanus Liberibacter
Abstract
Citrus Huanglongbing (HLB) is caused by the phloem-limited α-proteobacterium ‘Candidatus Liberibacter spp.’, among which ‘Ca. L. africanus’ (CLaf) has posed a significant threat to citrus production in Africa for nearly a century. CLaf is closely related to the globally prevalent ‘Ca. L. asiaticus’ (CLas), whereas little is known about the virulence of CLaf, primarily because of limited genome resources. In this study, we completed the whole-genome assembly and annotation of the CLaf strain Zim

Integrated bacterial transcriptome and host metabolome analysis reveals insights into “ Candidatus Liberibacter asiaticus” population dynamics in the fruit pith of three citrus cultivars with different tolerance

Citation
Li et al. (2024). Microbiology Spectrum 12 (4)
Names
Ca. Liberibacter asiaticus
Abstract
ABSTRACT “ Candidatus Liberibacter asiaticus” (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars (“Shatangju” mandarin, “Guanxi” pomelo, and

Metabolomic Profiling Reveals the Quality Variations in Citri Reticulatae Pericarpium (Citrus reticulata Blanco cv. Chachiensis) with Different Storage Ages in Response to “Candidatus Liberibacter Asiaticus” Infection

Citation
Liang et al. (2024). Foods 13 (6)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
Citri Reticulatae Pericarpium, especially the pericarp of Citrus reticulata Blanco cv. Chachiensis (PCRC), is an important edible and medicinal ingredient for health and pharmacological properties. Citrus Huanglongbing, a devastating disease that currently threatens the citrus industry worldwide, is caused by a phloem-limited alpha-proteobacterium, “Candidatus Liberibacter asiaticus” (CLas). The industry of cultivar Chachiensis has been suffering from HLB. Although HLB affected the quality of ci

Genome sequence resource for “Candidatus Liberibacter asiaticus” strain GDCZ from a historical HLB endemic region in China

Citation
Zheng et al. (2023). BMC Genomic Data 24 (1)
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Objectives “Candidatus Liberibacter asiaticus” (CLas) is an un-culturable α-proteobacterium that caused citrus Huanglongbing (HLB), a destructive disease threatening citrus production worldwide. In China, the presence of HLB was first reported in Chaoshan region of Guangdong province, China around a century ago. Thus, whole genome information of CLas strains from Chaoshan area become the most important resource to understand the population diversity and e

Genome sequence resource for “Candidatus Liberibacter asiaticus” strain GDCZ from a historical HLB endemic region in China

Citation
Zheng et al. (2023).
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Objectives: “Candidatus Liberibacter asiaticus” (CLas) is an un-culturable α-proteobacterium that caused citrus Huanglongbing (HLB), a destructive disease threatening citrus production worldwide. In China, the presence of HLB was first reported in Chaoshan region of Guangdong province, China around a century ago. Thus, whole genome information of CLas strains from Chaoshan area become the most important resource to understand the population diversity and evaluation of CLas in Ch

Pathogenicity and Transcriptomic Analyses of Two “ Candidatus Liberibacter asiaticus” Strains Harboring Different Types of Phages

Citation
Zheng et al. (2023). Microbiology Spectrum 11 (3)
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. “ Candidatus Liberibacter asiaticus” is one of the most common putative causal agents of HLB. Phages of “ Ca . Liberibacter asiaticus”

Comparative transcriptome profiling of susceptible and tolerant citrus species at early and late stage of infection by “Candidatus Liberibacter asiaticus”

Citation
Gao et al. (2023). Frontiers in Plant Science 14
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB), caused by “Candidatus Liberibacter asiaticus” (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in f