Deng, Xiaoling


Publications
42

Pathogenicity and Transcriptomic Analyses of Two “ Candidatus Liberibacter asiaticus” Strains Harboring Different Types of Phages

Citation
Zheng et al. (2023). Microbiology Spectrum 11 (3)
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. “ Candidatus Liberibacter asiaticus” is one of the most common putative causal agents of HLB. Phages of “ Ca . Liberibacter asiaticus”

Comparative transcriptome profiling of susceptible and tolerant citrus species at early and late stage of infection by “Candidatus Liberibacter asiaticus”

Citation
Gao et al. (2023). Frontiers in Plant Science 14
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB), caused by “Candidatus Liberibacter asiaticus” (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in f
Text

Physiological Variables Influenced by ‘Candidatus Liberibacter asiaticus’ Infection in Two Citrus Species

Citation
Wu et al. (2023). Plant Disease 107 (6)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ is the bacterium associated with the citrus disease known as huanglongbing (HLB). This study evaluated the influence of ‘Ca. L. asiaticus’ infection on a number of key plant physiological variables concerning photosynthesis, cell integrity, reactive oxygen species scavengers’ activity, and osmoregulation of two different species of citrus—the pomelo Citrus maxima and the mandarin C. reticulata ‘Tankan’—relative to their measured ‘Ca. L. asiaticus’ infection l
Text

Citrus tristeza virus Promotes the Acquisition and Transmission of ‘Candidatus Liberibacter Asiaticus’ by Diaphorina citri

Citation
Chen et al. (2023). Viruses 15 (4)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
Diaphorina citri Kuwayama (D. citri) is an insect vector of phloem-limited ‘Candidatus Liberibacter asiatus’ (CLas), the presumed pathogen of citrus Huanglongbing (HLB). Recently, our lab has preliminarily found it acquired and transmitted Citrus tristeza virus (CTV), which was previously suggested to be vectored by species of aphids. However, the influences of one of the pathogens on the acquisition and transmission efficiency of the other pathogen remain unknown. In this study, CLas and CTV ac
Text

Machine learning and analysis of genomic diversity of “Candidatus Liberibacter asiaticus” strains from 20 citrus production states in Mexico

Citation
Huang et al. (2022). Frontiers in Plant Science 13
Names
Ca. Liberibacter asiaticus
Abstract
BackgroundHuanglongbing (HLB, yellow shoot disease) is a highly destructive citrus disease associated with a nonculturable bacterium, “Candidatus Liberibacter asiaticus” (CLas), which is transmitted by Asian citrus psyllid (ACP, Diaphorina citri). In Mexico, HLB was first reported in Tizimin, Yucatán, in 2009 and is now endemic in 351 municipalities of 25 states. Understanding the population diversity of CLas is critical for HLB management. Current CLas diversity research is exclusively based on
Text

Integrated Transcriptome and Metabolome Analysis Reveals Phenylpropanoid Biosynthesis and Phytohormone Signaling Contribute to “Candidatus Liberibacter asiaticus” Accumulation in Citrus Fruit Piths (Fluffy Albedo)

Citation
Cui et al. (2022). International Journal of Molecular Sciences 23 (24)
Names
Ca. Liberibacter asiaticus
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is a phloem-restricted α-proteobacterium that is associated with citrus huanglongbing (HLB), which is the most destructive disease that affects all varieties of citrus. Although midrib is usually used as a material for CLas detection, we recently found that the bacterium was enriched in fruits, especially in the fruit pith. However, no study has revealed the molecular basis of these two parts in responding to CLas infection. Therefore, we performed tran
Text

Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”

Citation
Wang et al. (2022). International Journal of Molecular Sciences 23 (17)
Names
Ca. Liberibacter asiaticus
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian c
Text

Investigation of Citrus HLB Symptom Variations Associated with “Candidatus Liberibacter asiaticus” Strains Harboring Different Phages in Southern China

Citation
Bao et al. (2021). Agronomy 11 (11)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is a devastating disease affecting citrus production worldwide. In China, the disease is associated with an unculturable alpha-proteobacterium, “Candidatus Liberibacter asiaticus” (CLas). Phages/prophages of CLas have recently been identified through intensive genomic research. The phage information has facilitated research on CLas biology such as population diversity and virulence gene identification. However, little is known about the roles of CLas phages in HLB symptom dev
Text

A Novel Microviridae Phage (CLasMV1) From “Candidatus Liberibacter asiaticus”

Citation
Zhang et al. (2021). Frontiers in Microbiology 12
Names
Ca. Liberibacter asiaticus
Abstract
“CandidatusLiberibacter asiaticus” (CLas) is an unculturable phloem-limited α-proteobacterium associated with citrus Huanglongbing (HLB; yellow shoot disease). HLB is currently threatening citrus production worldwide. Understanding the CLas biology is critical for HLB management. In this study, a novel single-stranded DNA (ssDNA) phage, CLasMV1, was identified in a CLas strain GDHZ11 from Guangdong Province of China through a metagenomic analysis. The CLasMV1 phage had a circular genome of 8,869
Text