Kim, Jong-Geol


Publications
4

Draft Genome Sequence of “Candidatus Izimaplasma sp.” Strain ZiA1, Obtained from a Toluene-Degrading and Iron-Reducing Enrichment Culture

Citation
Kim et al. (2018). Microbiology Resource Announcements 7 (8)
Names
Ca. Izimaplasma
Abstract
Here, we report the draft genome sequence of “ Candidatus Izimaplasma sp.” strain ZiA1 (1.88 Mb and 29.6% G+C content).

Draft Genome Sequence of an Ammonia-Oxidizing Archaeon, “Candidatus Nitrosopumilus sediminis” AR2, from Svalbard in the Arctic Circle

Citation
Park et al. (2012). Journal of Bacteriology 194 (24)
Names
Ca. Nitrosopumilus sediminis
Abstract
ABSTRACT Ammonia-oxidizing archaea (AOA) typically predominate over ammonia-oxidizing bacteria in marine sediments. We herein present the draft genome sequence of an ammonia-oxidizing archaeon, “ Candidatus Nitrosopumilus sediminis” AR2, which was enriched in culture from a marine sediment obtained off Svalbard, within the Arctic Circle. The typical genes involved in archaeal ammonia oxidation and carbon fixation necessary for chemolithoautotrophic

Draft Genome Sequence of an Ammonia-Oxidizing Archaeon, “Candidatus Nitrosopumilus koreensis” AR1, from Marine Sediment

Citation
Park et al. (2012). Journal of Bacteriology 194 (24)
Names
Ca. Nitrosopumilus koreensis
Abstract
ABSTRACT Ammonia-oxidizing archaea (AOA) are ubiquitous in various marine environments and play important roles in the global nitrogen and carbon cycles. We here present a high-quality draft genome sequence of an ammonia-oxidizing archaeon, “ Candidatus Nitrosopumilus koreensis” AR1, which was found to dominate an ammonia-oxidizing enrichment culture in marine sediment off Svalbard, the Arctic Circle. Despite a significant number of nonoverlapping g

Draft Genome Sequence of the Sulfur-Oxidizing Bacterium “Candidatus Sulfurovum sediminum” AR, Which Belongs to the Epsilonproteobacteria

Citation
Park et al. (2012). Journal of Bacteriology 194 (15)
Names
Ca. Sulfurovum sediminum
Abstract
ABSTRACT Sulfur-oxidizing bacteria are common microorganisms in a variety of sulfide-rich environments. They play important roles in the global sulfur cycle on earth. Here, we present a high-quality draft genome sequence of a sulfur-oxidizing bacterium, “ Candidatus Sulfurovum sediminum” strain AR, which belongs to the class Epsilonproteobacteria and dominated an enrichment culture from a marine sediment collected off Svalbar