Gaisin, Vasil A


Publications
4

A new mesophilic member of the Chloroflexota phylum ‘Ca. Сhloroploca septentrionalis’ from the meromictic lake Bol'shie Khruslomeny separated from the White Sea

Citation
Gorlenko et al. (2025). FEMS Microbiology Letters 372
Names
“Chloroploca septentrionalis” Chloroploca
Abstract
Abstract A new filamentous phototrophic bacterium Khr17 was isolated as an enrichment culture from the brackish polar lake Bol'shie Khruslomeny. The organism was a halotolerant, strictly anaerobic phototroph possessing photosystem II. Sulfide was required for phototrophic growth. The cells of bacterium Khr17 formed nonmotile, wavy trichomes surrounded by a sheath. The cells contained chlorosomes, gas vesicles, and storage granules. The antenna pigments of bacterium Khr17 were bact
Text

‘Candidatus Oscillochloris kuznetsovii’ a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from Arctic coastal environments

Citation
Gaisin et al. (2020). FEMS Microbiology Letters 367 (19)
Names
Oscillochloris kuznetsovii
Abstract
ABSTRACTChloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous mul
Text

Candidatus Oscillochloris fontis’: a novel mesophilic phototrophic Chloroflexota bacterium belonging to the ubiquitous Oscillochloris genus

Citation
Gaisin et al. (2019). FEMS Microbiology Letters 366 (8)
Names
“Oscillochloris fontis”
Abstract
ABSTRACT We present the results of a study of mesophilic anoxygenic phototrophic Chloroflexota bacteria from Mechigmen hot spring (the Chukotka Peninsula) and Siberia. According to 16S rRNA phylogenetic analysis, these bacteria belong to Oscillochloris trichoides. However, sequencing the draft genome of the bacterium from the Chukotka and analysis of the average nucleotide identity, as well as in silico DNA-DNA hybridization, reveal that this bacterium belongs to a novel species w
Text