Peces, Miriam


Publications
3

Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs

Citation
Nierychlo et al. (2021). Frontiers in Microbiology 12
Names
“Neomicrothrix” “Neomicrothrix subdominans”
Abstract
CandidatusMicrothrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species,Ca.M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigateCa.Microthrix spp. diversity, d

“Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2021). The ISME Journal 15 (12)
Names
Ca. Dechloromonas phosphoritropha Ca. Dechloromonas phosphorivorans
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in

“Candidatus Dechloromonas phosphatis” and “Candidatus Dechloromonas phosphovora”, two novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2020).
Names
Ca. Dechloromonas phosphatis Ca. Dechloromonas phosphovora
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate (P) removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish wastewater treatment plants. Two species were abundant, novel, and uncultured, and coul