Ramasamy, Manikandan


Publications
8

Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus 

Citation
Aksenov et al. (2024).
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB

Spatial chemistry of citrus reveals molecules bactericidal toCandidatusLiberibacter asiaticus

Citation
Aksenov et al. (2024).
Names
Ca. Liberibacter asiaticus
Abstract
AbstractHuanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium,CandidatusLiberibacter asiaticus(CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries changein vivoin HLB-impacted tree

Evaluation of Candidatus Liberibacter Asiaticus Efflux Pump Inhibition by Antimicrobial Peptides

Citation
Wang et al. (2022). Molecules 27 (24)
Names
Liberibacter
Abstract
Citrus greening, also known as Huanglongbing (HLB), is caused by the unculturable bacterium Candidatus Liberibacter spp. (e.g., CLas), and has caused a devastating decline in citrus production in many areas of the world. As of yet, there are no definitive treatments for controlling the disease. Antimicrobial peptides (AMPs) that have the potential to block secretion-dependent effector proteins at the outer-membrane domains were screened in silico. Predictions of drug-receptor interactions were b

Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp

Citation
Irigoyen et al. (2020). Nature Communications 11 (1)
Names
Liberibacter
Abstract
AbstractA major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibac