Publications
3843

Sort by date names
Browse by authors subjects journals

Discovery of Novel GMPS Inhibitors of Candidatus Liberibacter Asiaticus by Structure Based Design and Enzyme Kinetic

Citation
Nan et al. (2021). Biology 10 (7)
Names
Liberibacter
Abstract
Citrus production is facing an unprecedented problem because of huanglongbing (HLB) disease. Presently, no effective HLB-easing method is available when citrus becomes infected. Guanosine 5′-monophosphate synthetase (GMPS) is a key protein in the de novo synthesis of guanine nucleotides. GMPS is used as an attractive target for developing agents that are effective against the patogen infection. In this research, homology modeling, structure-based virtual screening, and molecular docking were use

Spatiotemporal and Quantitative Monitoring of the Fate of ‘Candidatus Phytoplasma Solani’ in Tomato Plants Infected by Grafting

Citation
Carminati et al. (2021). Pathogens 10 (7)
Names
Ca. Phytoplasma
Abstract
Understanding how phytoplasmas move and multiply within the host plant is fundamental for plant–pathogen interaction studies. In recent years, the tomato has been used as a model plant to study this type of interaction. In the present work, we investigated the distribution and multiplication dynamics of one strain of ‘Candidatus Phytoplasma (Ca. P.) solani’ (16SrXII-A) in tomato (Solanum lycopersicum L., cv. Micro-Tom) plants. We obtained infected plants by grafting, a fast and effective method

Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs

Citation
Nierychlo et al. (2021). Frontiers in Microbiology 12
Names
“Neomicrothrix” “Neomicrothrix subdominans”
Abstract
CandidatusMicrothrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species,Ca.M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigateCa.Microthrix spp. diversity, d

Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the “Roseobacter Clade” Into a Novel Family, Roseobacteraceae fam. nov

Citation
Liang et al. (2021). Frontiers in Microbiology 12
Names
“Planktomicrobium” Paracoccaceae Roseobacteraceae
Abstract
The family Rhodobacteraceae consists of alphaproteobacteria that are metabolically, phenotypically, and ecologically diverse. It includes the roseobacter clade, an informal designation, representing one of the most abundant groups of marine bacteria. The rapid pace of discovery of novel roseobacters in the last three decades meant that the best practice for taxonomic classification, a polyphasic approach utilizing phenotypic, genotypic, and phylogenetic characteristics, was not always followed.

A Glycolipid Glycosyltransferase with Broad Substrate Specificity from the Marine Bacterium “ Candidatus Pelagibacter sp.” Strain HTCC7211

Citation
Wei et al. (2021). Applied and Environmental Microbiology 87 (14)
Names
Ca. Pelagibacter
Abstract
The bilayer formed by membrane lipids serves as the containment unit for living microbial cells. In the marine environment, it has been firmly established that phytoplankton and heterotrophic bacteria can substitute phospholipids with nonphosphorus sugar-containing glycoglycerolipids in response to phosphorus limitation.

“Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2021). The ISME Journal 15 (12)
Names
Ca. Dechloromonas phosphoritropha Ca. Dechloromonas phosphorivorans
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in