Publications
3843

Sort by date names
Browse by authors subjects journals

Oxidative Stress and Antioxidative Activity in Leaves and Roots of Carrot Plants Induced by Candidatus Phytoplasma Solani

Citation
Mitrovic et al. (2021). Plants 10 (2)
Names
Ca. Phytoplasma Ca. Phytoplasma solani
Abstract
The present study examined the effects of Candidatus Phytoplasma solani infection on antioxidative metabolism in leaves and roots of carrot (Daucus carota L.). Disease symptoms appeared at the end of June in the form of the chlorosis on some of the leaves, which became intensely red one week later, while the previously healthy leaves from the same branch becme chlorotic. A few days later, all leaves from the infected leaf branch were intensely red. Infected plants also had slower growth compared

Stably inherited transfer of the bacterial symbiont Candidatus Erwinia dacicola from wild olive fruit flies Bactrocera oleae to a laboratory strain

Citation
Livadaras et al. (2021). Bulletin of Entomological Research 111 (3)
Names
Ca. Erwinia dacicola
Abstract
AbstractThe olive fruit fly, Bactrocera oleae, the most serious pest of olives, requires the endosymbiotic bacteria Candidatus Erwinia dacicola in order to complete its development in unripe green olives. Hence a better understanding of the symbiosis of Ca. E. dacicola and its insect host may lead to new strategies for reduction of B. oleae and thus minimize its economic impact on olive production. Studies of this symbiosis are hampered as the bacterium cannot be grown in vitro and the establish

‘Candidatus Phytoplasma asteris’ subgroups display distinct disease progression dynamics during the carrot growing season

Citation
Clements et al. (2021). PLOS ONE 16 (2)
Names
Ca. Phytoplasma asteris
Abstract
Aster Yellows phytoplasma (AYp; ‘Candidatus Phytoplasma asteris’) is an obligate bacterial pathogen that is the causative agent of multiple diseases in herbaceous plants. While this phytoplasma has been examined in depth for its disease characteristics, knowledge about the spatial and temporal dynamics of pathogen spread is lacking. The phytoplasma is found in plant’s phloem and is vectored by leafhoppers (Cicadellidae: Hemiptera), including the aster leafhopper, Macrosteles quadrilineatus Forbe

The occurrence of Affixifilum gen. nov. and Neolyngbya (Oscillatoriaceae) in South Florida (USA), with the description of A. floridanum sp. nov. and N. biscaynensis sp. nov

Citation
Lefler et al. (2021). Journal of Phycology 57 (1)
Names
Affixifilum
Abstract
South Florida (USA) has a subtropical to tropical climate with an extensive and diverse coastline that supports the growth of benthic cyanobacterial mats (BCMs). These BCMs are widespread and potentially house numerous bioactive compounds; however, the extent of the cyanobacterial diversity within these mats remains largely unknown. To elucidate this diversity, BCMs from select locations in South Florida were sampled and isolated into unicyanobacterial cultures for morphological and molecular st

Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

Citation
Taylor et al. (2021). The ISME Journal 15 (2)
Names
Perseibacter sydneyensis Ts Perseibacter Perseibacteraceae Tethybacter castelli Ts Tethybacter Tethybacteraceae Tethybacterales
Abstract
Abstract The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ

Rubbery Taproot Disease of Sugar Beet in Serbia Associated with ‘Candidatus Phytoplasma solani’

Citation
Ćurčić et al. (2021). Plant Disease 105 (2)
Names
Ca. Phytoplasma solani
Abstract
Rubbery taproot disease (RTD) of sugar beet was observed in Serbia for the first time in the 1960s. The disease was already described in neighboring Bulgaria and Romania at the time but it was associated with abiotic factors. In this study on RTD of sugar beet in its main growing area of Serbia, we provide evidence of the association between ‘Candidatus Phytoplasma solani’ (stolbur phytoplasma) infection and the occurrence of typical RTD symptomatology. ‘Ca. P. solani’ was identified by PCR and