Publications
3807

Sort by date names
Browse by authors subjects journals

“Candidatus Dechloromonas phosphatis” and “Candidatus Dechloromonas phosphovora”, two novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2020).
Names
Ca. Dechloromonas phosphatis Ca. Dechloromonas phosphovora
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate (P) removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish wastewater treatment plants. Two species were abundant, novel, and uncultured, and coul

Multiplex detection of “Candidatus Liberibacter asiaticus” and Spiroplasma citri by qPCR and droplet digital PCR

Citation
Maheshwari et al. (2020).
Names
Ca. Liberibacter asiaticus
Abstract
Abstract“Candidatus Liberibacter asiaticus” (CLas) and Spiroplasma citri are phloem-limited bacteria that infect citrus and are transmitted by insect vectors. S. citri causes citrus stubborn disease (CSD) and is vectored by the beet leafhopper in California. CLas is associated with the devastating citrus disease, Huanglongbing (HLB), and is vectored by the Asian citrus psyllid. CLas is a regulatory pathogen spreading in citrus on residential properties in southern California and is an imminent t

Production of nonulosonic acids in the extracellular polymeric substances of “CandidatusAccumulibacter phosphatis”

Citation
Tomás-Martínez et al. (2020).
Names
“Accumulibacter” “Accumulibacter phosphatis”
Abstract
AbstractNonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as important compound in the extracellular matrix of virtually all microbial life and in “CandidatusAccumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here

Aliikangiella coralliicola sp. nov., a bacterium isolated from coral Porites lutea, and proposal of Pleioneaceae fam. nov. to accommodate Pleionea and Aliikangiella

Citation
Wang et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
Pleionea Pleioneaceae
Abstract
A novel Gram-stain-negative, non-endospore-forming, motile, and aerobic bacterial strain, M105T, was isolated from coral Porites lutea, and was subjected to a polyphasic taxonomic study. Global alignment based on 16S rRNA gene sequences indicated that M105T shares the highest sequence identity of 94.5 % with Aliikangiella marina GYP-15T. The average nucleotide identity (ANI) and average amino acid identity (A

List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ

Citation
Parte et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
“Adiutricales” “Desulfofervidales”
Abstract
The List of Prokaryotic names with Standing in Nomenclature (LPSN) was acquired in November 2019 by the DSMZ and was relaunched using an entirely new production system in February 2020. This article describes in detail the structure of the new site, navigation, page layout, search facilities and new features.

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
Myxococcia Polyangiia Pseudobdellovibrionaceae Bdellovibrionota Oligoflexia “Desulfofervidales” Ca. Desulfofervidaceae Ca. Desulfofervidus “Desulfofervidia” Ca. Magnetomorum “Magnetomoraceae” “Adiutricaceae” Ca. Adiutrix Myxococcota “Adiutricales”
Abstract
The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria , it rarely affiliates with other proteobacterial classes and is freque