Publications
4420

Sort by date names
Browse by authors subjects journals

Probing the Application of OmpA-Derived Peptides to Disrupt the Acquisition of ‘Candidatus Liberibacter asiaticus’ by Diaphorina citri

Citation
Merfa et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter americanus Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) and ‘Candidatus Liberibacter americanus’ (CLam) are associated with HLB in Brazil but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid [ACP]) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, de
Text

A Review of the ‘Candidatus Liberibacter africanus’ Citrus Pathosystem in Africa

Citation
da Graça et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter africanus
Abstract
It has been nearly 100 years since citrus growers in two distinct regions in the northern provinces of South Africa noticed unusual symptoms in their citrus trees, causing significant crop losses. They had no idea that these symptoms would later become part of an almost global pandemic of a disease called greening or huanglongbing (HLB). The rapid spread of the disease indicated that it might be caused by a transmissible pathogen, but it took >50 years to identify the causative agent as ‘Can
Text

Host Plant Adaptation Drives Changes inDiaphorina citriProteome Regulation, Proteoform Expression, and Transmission of ‘CandidatusLiberibacter asiaticus’, the Citrus Greening Pathogen

Citation
Ramsey et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Abstract
The Asian citrus psyllid (Diaphorina citri) is a pest of citrus and the primary insect vector of the bacterial pathogen, ‘Candidatus Liberibacter asiaticus’ (CLas), which is associated with citrus greening disease. The citrus relative Murraya paniculata (orange jasmine) is a host plant of D. citri but is more resistant to CLas compared with all tested Citrus genotypes. The effect of host switching of D. citri between Citrus medica (citron) and M. paniculata plants on the acquisition and transmis
Text

Cultivation of a vampire: ‘ Candidatus Absconditicoccus praedator’

Citation
Yakimov et al. (2022). Environmental Microbiology 24 (1)
Names
Ca. Absconditicoccus praedator
Abstract
Summary Halorhodospira halophila , one of the most‐xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt‐saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate‐Phyla‐Radiation bacterium, that we named ‘ Ca . Absconditicoccus praedator’ M39‐6, which predates H .
Text

Intracellular Life Cycle of ‘CandidatusLiberibacter asiaticus’ Inside Psyllid Gut Cells

Citation
Lin et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas), the devastating pathogen related to Huanglongbing (HLB), is a phloem-limited, fastidious, insect-borne bacterium. Rapid spread of HLB disease relies on CLas-efficient propagation in the vector, the Asian citrus psyllid Diaphorina citri, in a circulative manner. Understanding the intracellular lifecycle of CLas in psyllid midgut, the major organ for CLas transmission, is fundamental to improving current management strategies. Using a microscopic approac
Text

Prevalent Transmission of ‘Candidatus Liberibacter asiaticus’ over ‘Ca. Liberibacter americanus’ in a Long-Term Controlled Environment

Citation
Gasparoto et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter americanus Ca. Liberibacter asiaticus
Abstract
In Brazil, citrus huanglongbing (HLB) is associated with ‘Candidatus Liberibacter americanus’ (CLam) and ‘Ca. Liberibacter asiaticus’ (CLas). However, there are few studies about HLB epidemiology when both Liberibacter spp. and its insect vector, the Asian citrus psyllid (ACP, Diaphorina citri), are present. The objective of this work was to compare the transmission of HLB by ACP when both CLam and CLas are present as primary inoculum. Two experiments were performed under screenhouse conditions
Text