Publications
4368

Sort by date names
Browse by authors subjects journals

Symbionts of the ciliate Euplotes : diversity, patterns and potential as models for bacteria–eukaryote endosymbioses

Citation
Boscaro et al. (2019). Proceedings of the Royal Society B: Biological Sciences 286 (1907)
Names
“Euplotella” “Fujishimia” “Parafinniella” “Anadelfobacter sociabilis” “Bandiella numerosa” “Euplotella sexta” “Finniella dimorpha” “Fujishimia apicalis” “Parafinniella ignota”
Abstract
Endosymbioses between bacteria and eukaryotes are enormously important in ecology and evolution, and as such are intensely studied. Despite this, the range of investigated hosts is narrow in the context of the whole eukaryotic tree of life: most of the information pertains to animal hosts, while most of the diversity is found in unicellular protists. A prominent case study is the ciliate Euplotes , which has repeatedly taken up the bacterium Polyn
Text

Draft Genome Sequence of Desulfosporosinus sp. Strain Sb-LF, Isolated from an Acidic Peatland in Germany

Citation
Hausmann et al. (2019). Microbiology Resource Announcements 8 (29)
Names
Abstract
Desulfosporosinus sp. strain Sb-LF was isolated from an acidic peatland in Bavaria, Germany. Here, we report the draft genome sequence of the sulfate-reducing and lactate-utilizing strain Sb-LF.

Maternal Contribution of Candidatus Liberibacter asiaticus to Asian Citrus Psyllid (Hemiptera: Liviidae) Nymphs Through Oviposition Site Inoculation and Transovarial Transmission

Citation
Kelley, Pelz-Stelinski (2019). Journal of Economic Entomology
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits Candidatus Liberibacter asiaticus (Las), the bacterial pathogen putatively responsible for citrus huanglongbing. Multiple studies have shown psyllids acquire Las more frequently, and are more likely to inoculate susceptible plants, when they acquire Las as nymphs. Understanding the transmission of Las to nymphs is critical to the Las lifecycle. The objective of this study was to determine the
Text

Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria

Citation
Spietz et al. (2019). Environmental Microbiology 21 (7)
Names
Ca. Thioglobus singularis
Abstract
Summary A hallmark of the SUP05 clade of marine Gammaproteobacteria is the ability to use energy obtained from reduced inorganic sulfur to fuel autotrophic fixation of carbon using RuBisCo. However, some SUP05 also have the genetic potential for heterotrophic growth, raising questions about the roles of SUP05 in the marine carbon cycle. We used genomic reconstructions, physiological growth experiments and proteomics t
Text