Publications
4358

Sort by date names
Browse by authors subjects journals

Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick

Citation
Rahlff et al. (2023). ISME Communications 3 (1)
Names
“Alishewanella slickus”
Abstract
Abstract Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML
Text

Characterization of a bloom-associated alphaproteobacterial lineage, ‘Candidatus Phycosocius’: insights into freshwater algal-bacterial interactions

Citation
Tanabe et al. (2023). ISME Communications 3 (1)
Names
Ca. Phycosocius Ca. Phycosocius spiralis
Abstract
Abstract Marine bacterial lineages associated with algal blooms, such as the Roseobacter clade, have been well characterized in ecological and genomic contexts, yet such lineages have rarely been explored in freshwater blooms. This study performed phenotypic and genomic analyses of an alphaproteobacterial lineage ‘Candidatus Phycosocius’ (denoted the CaP clade), one of the few lineages ubiquitously associated with freshwater algal blooms, and described a novel species: ‘Ca. Phycos
Text

The terrestrial isopod symbiont ‘Candidatus Hepatincola porcellionum’ is a potential nutrient scavenger related to Holosporales symbionts of protists

Citation
Dittmer et al. (2023). ISME Communications 3 (1)
Names
Ca. Hepatincola porcellionum
Abstract
Abstract The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of ‘Ca. Hepatincola porcellionum’, a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequen
Text

New Assays for Rapid Detection of Beet Leafhopper-Associated Plant Pathogens, ‘Candidatus Phytoplasma trifolii’, Beet Curly Top Virus, and Spiroplasma citri

Citation
Swisher Grimm et al. (2023). Plant Disease 107 (12)
Names
Ca. Phytoplasma trifolii
Abstract
The beet leafhopper Circulifer tenellus is an important pest of agricultural crops in the United States, where it transmits beet curly top virus, beet leafhopper-transmitted virescence agent phytoplasma, and Spiroplasma citri to numerous crops, affecting yield and quality. Each of these pathogens have been linked to serious disease outbreaks within Washington State in the past century. To mitigate the risk of disease, growers target the beet leafhopper in their insect pest management programs.
Text

Prevalence of a ‘Candidatus Phytoplasma solani’-Related Strain Designated as New 16SrXII-P Subgroup over ‘Candidatus Arsenophonus phytopathogenicus’ in Sugar Beet in Eastern Germany

Citation
Duduk et al. (2023). Plant Disease 107 (12)
Names
Ca. Arsenophonus phytopathogenicus Ca. Phytoplasma solani
Abstract
Two phloem-limited pathogens, ‘Candidatus Arsenophonus phytopathogenicus’ and ‘Candidatus Phytoplasma solani’, threaten sugar beet production in France, Switzerland, and Germany. Previous studies of these pathogens in Germany had focused on its western and southern regions, leaving a knowledge gap about eastern Germany. Despite their importance, this study is the first to investigate phytoplasmas in sugar beet in Saxony-Anhalt, Germany. A phytoplasma strain related to ‘Ca. P. solani’ is found p
Text

The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus

Citation
Carter et al. (2023). Nature Communications 14 (1)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractThe bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into th
Text