SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Williams

JSON
See as cards

Williams, Timothy J


Publications
3

CitationNamesAbstract
Correction to: Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts Taylor et al. (2022). The ISME Journal 16 (4) Perseibacter sydneyensis Ts Perseibacter
Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations Ji et al. (2021). The ISME Journal 15 (9) 55 Names
Text
Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts Taylor et al. (2021). The ISME Journal 15 (2) Perseibacteraceae Tethybacter castelli Ts Tethybacter Tethybacteraceae Tethybacterales Perseibacter Perseibacter sydneyensis Ts
Text

Publication names
Loading names...
Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations
Abstract Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H2-oxidation to fix CO2 through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremiobacterota, we analysed 63 public metagenome-assembled genomes (MAGs) and nine new MAGs generated from Antarctic soil metagenomes. These MAGs represent both recognized classes within Ca. Eremiobacterota, namely Ca. Eremiobacteria and UBP9. Ca. Eremiobacteria are inferred to be facultatively acidophilic with a preference for peptides and amino acids as nutrient sources. Epifluorescence microscopy revealed Ca. Eremiobacteria cells from Antarctica desert soil to be coccoid in shape. Two orders are recognized within class Ca. Eremiobacteria: Ca. Eremiobacterales and Ca. Baltobacterales. The latter are metabolically versatile, with individual members having genes required for trace gas driven autotrophy, anoxygenic photosynthesis, CO oxidation, and anaerobic respiration. UBP9, here renamed Ca. Xenobia class. nov., are inferred to be obligate heterotrophs with acidophilic adaptations, but individual members having highly divergent metabolic capacities compared to Ca. Eremiobacteria, especially with regard to respiration and central carbon metabolism. We conclude Ca. Eremiobacterota to be an ecologically versatile phylum with the potential to thrive under an array of “extreme” environmental conditions.
Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts
Abstract The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ hybridisation microscopy. We obtained five metagenome-assembled-genomes (MAGs) from different sponge species that, together with a previously published MAG (AqS2), comprise two families within a new gammaproteobacterial order that we named Ca. Tethybacterales. Members of this order share a heterotrophic lifestyle but vary in their predicted ability to use various carbon, nitrogen and sulfur sources, including taurine, spermidine and dimethylsulfoniopropionate. The deep branching of the Ca. Tethybacterales within the Gammaproteobacteria and their almost exclusive presence in sponges suggests they have entered a symbiosis with their host relatively early in evolutionary time and have subsequently functionally radiated. This is reflected in quite distinct lifestyles of various species of Ca. Tethybacterales, most notably their diverse morphologies, predicted substrate preferences, and localisation within the sponge tissue. This study provides new insight into the evolution of metazoan–bacteria symbiosis.
Search