SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Song

JSON
See as cards

Song, Chuan-Sheng


Publications
4

CitationNamesAbstract
A Sec-Dependent Effector from “Candidatus Phytoplasma ziziphi” Suppresses Plant Immunity and Contributes to Pathogenicity Wan et al. (2025). Biology 14 (5) Ca. Phytoplasma ziziphi
Text
Molecular Variation and Phylogeny of Thymidylate Kinase Genes of Candidatus Phytoplasma ziziphi from Different Resistant and Susceptible Jujube Cultivars in China Song et al. (2024). Biology 13 (11) Ca. Phytoplasma ziziphi
Text
First Report of ‘Candidatus Phytoplasma ziziphi’-Related Strains Infecting Peony (Paeonia suffruticosa) Showing Leaf Yellows Symptoms in China Song et al. (2024). Plant Disease 108 (10) Ca. Phytoplasma ziziphi
Occurrence of Praxelis clematidea Witches’ Broom Disease Associated with 16SrI Group ‘Candidatus Phytoplasma asteris’ in Hainan Island of China Yu et al. (2024). Plant Disease 108 (4) Ca. Phytoplasma asteris

A Sec-Dependent Effector from “Candidatus Phytoplasma ziziphi” Suppresses Plant Immunity and Contributes to Pathogenicity
Jujube witches’ broom (JWB) disease, caused by Candidatus Phytoplasma ziziphi (Ca. P. ziziphi), severely threatens the production of Chinese jujube (Ziziphus jujuba Mill.). Emerging evidence highlights the critical role of phytoplasma-secreted effectors in pathogenesis, though few have been functionally characterized. Here, we identified a Sec-dependent effector, JWB790, from Ca. P. ziziphi, which was shown to suppress plant immunity. Through transient expression assays in Nicotiana benthamiana, pathogen inoculation assays, the generation of transgenic Arabidopsis thaliana plants, and RNA-seq-based transcriptomic profiling, we systematically investigated the virulence function of JWB790. Our findings revealed that JWB790 is highly expressed in JWB-infected tissues. The transient expression of JWB790 in N. benthamiana suppressed BAX-induced cell death and H2O2 accumulation. Furthermore, the stable overexpression of JWB790 in A. thaliana compromised disease resistance, accompanied by reduced H2O2 accumulation and callose deposition triggered by flg22. Additionally, the RNA-seq analysis of JWB790 transgenic Arabidopsis plants indicated that the overexpression of JWB790 altered the expression of biotic stress-related genes. In summary, JWB790 is a virulence factor that suppresses plant immunity and promotes pathogen proliferation. These results advance our understanding of Ca. P. ziziphi pathogenesis.
Molecular Variation and Phylogeny of Thymidylate Kinase Genes of Candidatus Phytoplasma ziziphi from Different Resistant and Susceptible Jujube Cultivars in China
The thymidylate kinase (tmk) gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the tmk genes of Candidatus phytoplasma ziziphi, in this study, the tmk genes of 50 phytoplasma strains infecting different resistant and susceptible jujube cultivars from different regions in China were amplified and analyzed. Two sequence types, tmk-x and tmk-y, were identified using clone-based sequencing. The JWB phytoplasma strains were classified into three types, type-X, type-Y, and type-XY, based on the sequencing chromatograms of the tmk genes. The type-X and type-Y strains contained only tmk-x and tmk-y genes, respectively. The type-XY strain contained both tmk-x and tmk-y genes. The type-X, type-Y, and type-XY strains comprised 42%, 12%, and 46% of all the strains, respectively. The type-X and type-XY strains were identified in both susceptible and resistant jujube cultivars, while type-Y strain was only identified in susceptible cultivars. Phylogenetic analysis indicated that the tmk genes of the phytoplasmas were divided into two categories: phylo-S and phylo-M. The phylo-S tmk gene was single-copied in the genome, with an evolutionary pattern similar to the 16S rRNA gene; the phylo-M tmk gene was multi-copied, related to PMU-mediated within-genome transposition and between-genome transfer. Furthermore, the phylogenetic tree suggested that the tmk genes shuttled between the genomes of the Paulownia witches’ broom phytoplasma and JWB phytoplasma. These findings provide insights into the evolutionary and adaptive mechanisms of phytoplasmas.
Search