SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Ashikhmin

JSON
See as cards

Ashikhmin, Aleksandr A


Publications
5

CitationNamesAbstract
A new mesophilic member of the Chloroflexota phylum ‘Ca. Сhloroploca septentrionalis’ from the meromictic lake Bol'shie Khruslomeny separated from the White Sea Gorlenko et al. (2025). FEMS Microbiology Letters 372 Chloroploca “Chloroploca septentrionalis”
‘Candidatus Chloroploca mongolica’ sp. nov. a new mesophilic filamentous anoxygenic phototrophic bacterium Bryantseva et al. (2021). FEMS Microbiology Letters 368 (16) Chloroploca asiatica Ts Chloroploca mongolica
‘Candidatus Oscillochloris kuznetsovii’ a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from Arctic coastal environments Gaisin et al. (2020). FEMS Microbiology Letters 367 (19) Oscillochloris kuznetsovii
‘Candidatus Oscillochloris fontis’: a novel mesophilic phototrophic Chloroflexota bacterium belonging to the ubiquitous Oscillochloris genus Gaisin et al. (2019). FEMS Microbiology Letters 366 (8) “Oscillochloris fontis”
‘Candidatus Viridilinea mediisalina’, a novel phototrophic Chloroflexi bacterium from a Siberian soda lake Gaisin et al. (2019). FEMS Microbiology Letters 366 (5) “Viridilinea” “Viridilinea mediisalina”

A new mesophilic member of the Chloroflexota phylum ‘Ca. Сhloroploca septentrionalis’ from the meromictic lake Bol'shie Khruslomeny separated from the White Sea
Abstract A new filamentous phototrophic bacterium Khr17 was isolated as an enrichment culture from the brackish polar lake Bol'shie Khruslomeny. The organism was a halotolerant, strictly anaerobic phototroph possessing photosystem II. Sulfide was required for phototrophic growth. The cells of bacterium Khr17 formed nonmotile, wavy trichomes surrounded by a sheath. The cells contained chlorosomes, gas vesicles, and storage granules. The antenna pigments of bacterium Khr17 were bacteriochlorophyll c and β- and γ-carotenes. The genome of Khr17 bacterium carries all the genes responsible for CO2 fixation via the 3-hydroxypropionate pathway. The genes encoding the proteins of the nitrogenase complex were not found. The DNA G + C content was 59.9%. The 16S rRNA gene sequence of isolate Khr17 exhibited 99.4% similarity to related species. The average nucleotide identity and digital DNA–DNA hybridization values for the isolate showed 91.9% and 46.9% similarity, respectively, to other ‘Ca. Chloroploca’ species. Based on its phenotypic and phylogenetic characteristics, classification of Khr17 as member of a new species, ‘Ca. Chloroploca septentrionalis’ sp. nov., was proposed. Members of the genus ‘Ca. Chloroploca’ have previously not been found in Arctic areas and in the plankton of meromictic lakes.
‘Candidatus Chloroploca mongolica’ sp. nov. a new mesophilic filamentous anoxygenic phototrophic bacterium
ABSTRACT A mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5−14 g/L and pH 8.0−9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contained chlorosomes. The antenna pigments were bacteriochlorophyll d and β- and γ-carotenes. Analysis of the genome assembled from the metagenome of the enrichment culture revealed all the enzymes of the 3-hydroxypropionate bi-cycle for autotrophic CO2 assimilation. The genome also contained the genes encoding a type IV sulfide:quinone oxidoreductase (sqrX). The organism had no nifHDBK genes, encoding the proteins of the nitrogenase complex responsible for dinitrogen fixation. The DNA G + C content was 58.6%. The values for in silico DNA‒DNA hybridization and average nucleotide identity between M50-1 and a closely related bacterium ‘Ca. Chloroploca asiatica’ B7-9 containing bacteriochlorophyll c were 53.4% and 94.0%, respectively, which corresponds to interspecies differences. Classification of the filamentous anoxygenic phototrophic bacterium M50-1 as a new ‘Ca. Chloroploca’ species was proposed, with the species name ‘Candidatus Chloroploca mongolica’ sp. nov.
‘Candidatus Oscillochloris kuznetsovii’ a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from Arctic coastal environments
ABSTRACT Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous multicellular anoxygenic phototrophic Chloroflexales bacterium from an Arctic coastal environment (Kandalaksha Gulf, the White Sea). Phylogenomic analysis and 16S rRNA phylogeny indicated that this bacterium belongs to the Oscillochloridaceae family as a new species. We propose that this species be named ‘Candidatus Oscillochloris kuznetsovii’. The genomes of this species possessed genes encoding sulfide:quinone reductase, the nitrogenase complex and the Calvin cycle, which indicate potential for photoautotrophic metabolism. We observed only mesophilic anaerobic anoxygenic phototrophic growth of this novel bacterium. Electron microphotography showed the presence of chlorosomes, polyhydroxyalkanoate-like granules and polyphosphate-like granules in the cells. High-performance liquid chromatography also revealed the presence of bacteriochlorophylls a, c and d as well as carotenoids. In addition, we found that this bacterium is present in benthic microbial communities of various coastal environments of the Kandalaksha Gulf.
Search