SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Montgomery

JSON
See as cards

Montgomery, Kate


Publications
5

CitationNamesAbstract
Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient‐poor Antarctic soils Montgomery et al. (2022). Environmental Microbiology 24 (9) Dormibacterota Dormibacterales Aeolococcaceae Dormibacteraceae
Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations Ji et al. (2021). The ISME Journal 15 (9) 55 Names
Text
Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient‐poor Antarctic soils Montgomery et al. (2021). Environmental Microbiology 23 (8) 15 Names
Text
Novel dichloromethane-fermenting bacteria in the Peptococcaceae family Holland et al. (2021). The ISME Journal 15 (6) Ca. Formimonas warabiya
Text
Atmospheric trace gases support primary production in Antarctic desert surface soil Ji et al. (2017). Nature 552 (7685) Dormibacterota Eremiobacterota “Dormiibacterota” Dormibacter Eremiobacter

Publication names
Loading names...
Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations
Abstract Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H2-oxidation to fix CO2 through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremiobacterota, we analysed 63 public metagenome-assembled genomes (MAGs) and nine new MAGs generated from Antarctic soil metagenomes. These MAGs represent both recognized classes within Ca. Eremiobacterota, namely Ca. Eremiobacteria and UBP9. Ca. Eremiobacteria are inferred to be facultatively acidophilic with a preference for peptides and amino acids as nutrient sources. Epifluorescence microscopy revealed Ca. Eremiobacteria cells from Antarctica desert soil to be coccoid in shape. Two orders are recognized within class Ca. Eremiobacteria: Ca. Eremiobacterales and Ca. Baltobacterales. The latter are metabolically versatile, with individual members having genes required for trace gas driven autotrophy, anoxygenic photosynthesis, CO oxidation, and anaerobic respiration. UBP9, here renamed Ca. Xenobia class. nov., are inferred to be obligate heterotrophs with acidophilic adaptations, but individual members having highly divergent metabolic capacities compared to Ca. Eremiobacteria, especially with regard to respiration and central carbon metabolism. We conclude Ca. Eremiobacterota to be an ecologically versatile phylum with the potential to thrive under an array of “extreme” environmental conditions.
Publication names
Loading names...
Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient‐poor Antarctic soils
Summary Candidatus Dormibacterota is an uncultured bacterial phylum found predominantly in soil that is present in high abundances within cold desert soils. Here, we interrogate nine metagenome‐assembled genomes ( MAGs ), including six new MAGs derived from soil metagenomes obtained from two eastern Antarctic sites. Phylogenomic and taxonomic analyses revealed these MAGs represent four genera and five species, representing two order‐level clades within Ca . Dormibacterota. Metabolic reconstructions of these MAGs revealed the potential for aerobic metabolism, and versatile adaptations enabling persistence in the ‘extreme’ Antarctic environment. Primary amongst these adaptations were abilities to scavenge atmospheric H 2 and CO as energy sources, as well as using the energy derived from H 2 oxidation to fix atmospheric CO 2 via the Calvin–Bassham–Benson cycle, using a RuBisCO type IE . We propose that these allow Ca . Dormibacterota to persist using H 2 oxidation and grow using atmospheric chemosynthesis in terrestrial Antarctica. Fluorescence in situ hybridization revealed Ca . Dormibacterota to be coccoid cells, 0.3–1.4 μm in diameter, with some cells exhibiting the potential for a symbiotic or syntrophic lifestyle.
Novel dichloromethane-fermenting bacteria in the Peptococcaceae family
Abstract Dichloromethane (DCM; CH2Cl2) is a toxic groundwater pollutant that also has a detrimental effect on atmospheric ozone levels. As a dense non-aqueous phase liquid, DCM migrates vertically through groundwater to low redox zones, yet information on anaerobic microbial DCM transformation remains scarce due to a lack of cultured organisms. We report here the characterisation of DCMF, the dominant organism in an anaerobic enrichment culture (DFE) capable of fermenting DCM to the environmentally benign product acetate. Stable carbon isotope experiments demonstrated that the organism assimilated carbon from DCM and bicarbonate via the Wood–Ljungdahl pathway. DCMF is the first anaerobic DCM-degrading population also shown to metabolise non-chlorinated substrates. It appears to be a methylotroph utilising the Wood–Ljungdahl pathway for metabolism of methyl groups from methanol, choline, and glycine betaine. The flux of these substrates from subsurface environments may either directly (DCM, methanol) or indirectly (choline, glycine betaine) affect the climate. Community profiling and cultivation of cohabiting taxa in culture DFE without DCMF suggest that DCMF is the sole organism in this culture responsible for substrate metabolism, while the cohabitants persist via necromass recycling. Genomic and physiological evidence support placement of DCMF in a novel genus within the Peptococcaceae family, ‘Candidatus Formimonas warabiya’.
Search