Nature


Publications
16

Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

Citation
Eme et al. (2023). Nature 618 (7967)
Names
“Asgardarchaeota”
Abstract
AbstractIn the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors—members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2–4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evalua

Biosynthetic potential of the global ocean microbiome

Citation
Paoli et al. (2022). Nature 607 (7917)
Names
“Eudoremicrobium malaspinii” “Eudoremicrobiaceae” “Eudoremicrobium”
Abstract
AbstractNatural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open oc

Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation

Citation
Browne et al. (2016). Nature 533 (7604)
Names
Abstract
AbstractOur intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and wellbeing1,2. Intestinal colonization begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla2. Culture-independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases1. However, owing to the prevailing perception that our