SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Brugère

JSON
See as cards

Brugère, Jean-François


Publications
5

CitationNamesAbstract
Methanomethylophilus alvi gen. nov., sp. nov., a Novel Hydrogenotrophic Methyl-Reducing Methanogenic Archaea of the Order Methanomassiliicoccales Isolated from the Human Gut and Proposal of the Novel Family Methanomethylophilaceae fam. nov Borrel et al. (2023). Microorganisms 11 (11) Methanomethylophilus alvi T Methanomethylophilus Methanomethylophilaceae
Text
A catalogue of 1,167 genomes from the human gut archaeome Chibani et al. (2021). Nature Microbiology 7 (1) “Methanarcanum hacksteinii” “Methanoprimaticola hominis” “Methanoprimaticola” “Methanarcanum” Methanobrevibacter intestini
Text
Archaea and the human gut: New beginning of an old story Gaci et al. (2014). World Journal of Gastroenterology 20 (43)
Genome Sequence of “ Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a Third Thermoplasmatales -Related Methanogenic Archaeon from Human Feces Borrel et al. (2013). Genome Announcements 1 (4) Ca. Methanomassiliicoccus intestinalis
Text
Genome Sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens Borrel et al. (2012). Journal of Bacteriology 194 (24) Methanomethylophilus alvi T
Text

Methanomethylophilus alvi gen. nov., sp. nov., a Novel Hydrogenotrophic Methyl-Reducing Methanogenic Archaea of the Order Methanomassiliicoccales Isolated from the Human Gut and Proposal of the Novel Family Methanomethylophilaceae fam. nov
The methanogenic strain Mx-05T was isolated from the human fecal microbiome. A phylogenetic analysis based on the 16S rRNA gene and protein marker genes indicated that the strain is affiliated with the order Methanomassiliicoccales. It shares 86.9% 16S rRNA gene sequence identity with Methanomassiliicoccus luminyensis, the only member of this order previously isolated. The cells of Mx-05T were non-motile cocci, with a diameter range of 0.4–0.7 μm. They grew anaerobically and reduced methanol, monomethylamine, dimethylamine, and trimethylamine into methane, using H2 as an electron donor. H2/CO2, formate, ethanol, and acetate were not used as energy sources. The growth of Mx-05T required an unknown medium factor(s) provided by Eggerthella lenta and present in rumen fluid. Mx-05T grew between 30 °C and 40 °C (optimum 37 °C), over a pH range of 6.9–8.3 (optimum pH 7.5), and between 0.02 and 0.34 mol.L−1 NaCl (optimum 0.12 mol.L−1 NaCl). The genome is 1.67 Mbp with a G+C content of 55.5 mol%. Genome sequence annotation confirmed the absence of the methyl branch of the H4MPT Wood–Ljungdahl pathway, as described for other Methanomassiliicoccales members. Based on an average nucleotide identity analysis, we propose strain Mx-05T as being a novel representative of the order Methanomassiliicoccales, within the novel family Methanomethylophilaceae, for which the name Methanomethylophilus alvi gen. nov, sp. nov. is proposed. The type strain is Mx-05T (JCM 31474T).
A catalogue of 1,167 genomes from the human gut archaeome
AbstractThe human gut microbiome plays an important role in health, but its archaeal diversity remains largely unexplored. In the present study, we report the analysis of 1,167 nonredundant archaeal genomes (608 high-quality genomes) recovered from human gastrointestinal tract, sampled across 24 countries and rural and urban populations. We identified previously undescribed taxa including 3 genera, 15 species and 52 strains. Based on distinct genomic features, we justify the split of theMethanobrevibacter smithiiclade into two separate species, with one represented by the previously undescribed ‘CandidatusMethanobrevibacter intestini’. Patterns derived from 28,581 protein clusters showed significant associations with sociodemographic characteristics such as age groups and lifestyle. We additionally show that archaea are characterized by specific genomic and functional adaptations to the host and carry a complex virome. Our work expands our current understanding of the human archaeome and provides a large genome catalogue for future analyses to decipher its impact on human physiology.
Genome Sequence of “ Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a Third Thermoplasmatales -Related Methanogenic Archaeon from Human Feces
ABSTRACT “ Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1 is a methanogenic archaeon found in the human gut and is a representative of the novel order of methanogens related to Thermoplasmatales . Its complete genome sequence is presented here.
Genome Sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens
ABSTRACT We report the draft genome sequence of “ Candidatus Methanomethylophilus alvus” Mx1201, a methanogen present in the human gut. It was enriched from human feces under anaerobic conditions with methanol as the substrate. Its circular genome, of around 1.7 Mb, contains genes needed for methylotrophic methanogenesis from methanol and tri-, di-, and monomethylamine.
Search