Publications
3867

Sort by date names
Browse by authors subjects journals

Elongatibacter sediminis gen. nov., sp. nov., isolated from intertidal sediment, and genomic comparison with all genera in the family Wenzhouxiangellaceae

Citation
Zhang et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (7)
Names
Elongatibacter
Abstract
A novel slightly halophilic, aerobic, and Gram-stain-negative strain, designated as CH-27T, was isolated during a bacterial resource investigation of intertidal sediment collected from Xiaoshi Island in Weihai, PR China. Cells of strain CH-27T were rod-shaped with widths of 0.3–0.6 µm and lengths of 2.0–11.0 µm. Strain CH-27T grew optimally at 37 °C, pH 7.0 and with 2.0 % (w/v) NaCl. Catalase activity was weakly positive and oxidase activity was positive. Phylogenetic analysis based on 16S rRNA

Hiding in Plain Sight: A Widespread Native Perennial Harbors Diverse Haplotypes of ‘Candidatus Liberibacter solanacearum’ and Its Potato Psyllid Vector

Citation
Kenney et al. (2024). Phytopathology® 114 (7)
Names
“Liberibacter solanacearum”
Abstract
The unculturable bacterium ‘ Candidatus Liberibacter solanacearum’ (CLso) is responsible for a growing number of emerging crop diseases. However, we know little about the diversity and ecology of CLso and its psyllid vectors outside of agricultural systems, which limits our ability to manage crop disease and understand the impacts this pathogen may have on wild plants in natural ecosystems. In North America, CLso is transmitted to crops by the native potato psyllid ( Bactericera cockerelli). Ho

Okeanomitos corallinicola gen. and sp. nov. (Nostocales, Cyanobacteria), a new toxic marine heterocyte‐forming Cyanobacterium from a coral reef

Citation
Li et al. (2024). Journal of Phycology
Names
Okeanomitos
Abstract
AbstractCyanobacterial mats supplanting coral and spreading coral diseases in tropical reefs, intensified by environmental shifts caused by human‐induced pressures, nutrient enrichment, and global climate change, pose grave risks to the survival of coral ecosystems. In this study, we characterized Okeanomitos corallinicola gen. and sp. nov., a newly discovered toxic marine heterocyte‐forming cyanobacterium isolated from a coral reef ecosystem of the South China Sea. Phylogenetic analysis, based

Rhizobia–diatom symbiosis fixes missing nitrogen in the ocean

Citation
Tschitschko et al. (2024). Nature 630 (8018)
Names
“Tectiglobus diatomicola”
Abstract
AbstractNitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3–5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has s