Ettema, Thijs J. G.


Publications
10

CitationNamesAbstract
Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor Appler et al. (2024). 18 Names
Text
Phylogenomics and ancestral reconstruction of Korarchaeota reveals genomic adaptation to habitat switching Tahon et al. (2023). “Korarchaeum calidifontum” “Caldabyssikora” “Korarchaeum” “Caldabyssikoraceae” “Caldabyssikora taketomiensis” “Caldabyssikora guaymasensis” “Thermotainarokoraceae” “Thermotainarokora guaymasensis” “Thermotainarokora taketomiensis” “Hydrocaminikoraceae”
Text
Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes Eme et al. (2023). Nature 618 (7967) Asgardarchaeota “Njordarchaeia” “Njordarchaeales” “Hodarchaeaceae” “Hodarchaeales”
Text
A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses Tamarit et al. (2022). Nature Microbiology 7 (7) Ca. Odinarchaeum yellowstonii
Text
A closed Candidatus Odinarchaeum genome exposes Asgard archaeal viruses Tamarit et al. (2021). Ca. Odinarchaeum yellowstonii
Text
Asgard archaea capable of anaerobic hydrocarbon cycling Seitz et al. (2019). Nature Communications 10 (1)
Text
Draft Genome Sequence of “ Candidatus Moanabacter tarae,” Representing a Novel Marine Verrucomicrobial Lineage Vosseberg et al. (2018). Microbiology Resource Announcements 7 (15) Ca. Moanabacter tarae
Text
Asgard archaea illuminate the origin of eukaryotic cellular complexity Zaremba-Niedzwiedzka et al. (2017). Nature 541 (7637) “Odinarchaeota” Asgardarchaeota
Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea Baker et al. (2016). Nature Microbiology 1 (3) Hadarchaeum yellowstonense Ts
Text
Complex archaea that bridge the gap between prokaryotes and eukaryotes Spang et al. (2015). Nature 521 (7551) Asgardarchaeota “Lokiarchaeota”