Publications
3826

Sort by date names
Browse by authors subjects journals

The Genome of the Amoeba Symbiont “ Candidatus Amoebophilus asiaticus” Reveals Common Mechanisms for Host Cell Interaction among Amoeba-Associated Bacteria

Citation
Schmitz-Esser et al. (2010). Journal of Bacteriology 192 (4)
Names
Ca. Amoebophilus asiaticus
Abstract
ABSTRACT Protozoa play host for many intracellular bacteria and are important for the adaptation of pathogenic bacteria to eukaryotic cells. We analyzed the genome sequence of “ Candidatus Amoebophilus asiaticus,” an obligate intracellular amoeba symbiont belonging to the Bacteroidetes . The genome has a size of 1.89 Mbp, encodes 1,557 proteins, and shows massive proliferation of IS elements (24% of all genes), although the g

Thiohalobacter thiocyanaticus gen. nov., sp. nov., a moderately halophilic, sulfur-oxidizing gammaproteobacterium from hypersaline lakes, that utilizes thiocyanate

Citation
Sorokin et al. (2010). International Journal of Systematic and Evolutionary Microbiology 60 (2)
Names
Abstract
A moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium, designated strain HRh1T, was obtained from mixed sediment samples from hypersaline chloride–sulfate lakes in the Kulunda Steppe, in south-western Siberia (Russia), using aerobic enrichment culture at 1 M NaCl with thiocyanate as substrate. Cells of the isolate were short, non-motile rods with a Gram-negative type of cell wall. The bacterium was an obligate aerobe capable of chemolithoautotrophic growth with th

Characterization of an ATP Translocase Identified in the Destructive Plant Pathogen “ Candidatus Liberibacter asiaticus”

Citation
Vahling et al. (2010). Journal of Bacteriology 192 (3)
Names
Ca. Liberibacter asiaticus
Abstract
ABSTRACT ATP/ADP translocases transport ATP across a lipid bilayer, which is normally impermeable to this molecule due to its size and charge. These transport proteins appear to be unique to mitochondria, plant plastids, and obligate intracellular bacteria. All bacterial ATP/ADP translocases characterized thus far have been found in endosymbionts of protozoa or pathogens of higher-order animals, including humans. A putative ATP/ADP translocase was uncovered during the geno