Applied Microbiology and Biotechnology


Publications
255

Production of nonulosonic acids in the extracellular polymeric substances of “Candidatus Accumulibacter phosphatis”

Citation
Tomás-Martínez et al. (2021). Applied Microbiology and Biotechnology 105 (8)
Names
“Accumulibacter” “Accumulibacter phosphatis”
Abstract
Abstract Nonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as an important compound in the extracellular matrix of virtually all microbial life and in “Candidatus Accumulibacter phosphatis”, a well-studied polyphosphate-accu

“ Candidatus Liberibacter asiaticus” Secretes Nonclassically Secreted Proteins That Suppress Host Hypersensitive Cell Death and Induce Expression of Plant Pathogenesis-Related Proteins

Citation
Du et al. (2021). Applied and Environmental Microbiology 87 (8)
Names
Ca. Liberibacter asiaticus
Abstract
In this study, we present a combined computational and experimental methodology that allows a rapid and efficient identification of the ncSecPs from bacteria, in particular the unculturable bacteria like CLas. Meanwhile, the study determined that a number of CLas ncSecPs suppressed HR-based cell death, and thus indicated a novel role for the bacterial ncSecPs in extracellular milieu.

The Actin Cytoskeleton Mediates Transmission of “ Candidatus Liberibacter solanacearum” by the Carrot Psyllid

Citation
Sarkar et al. (2021). Applied and Environmental Microbiology 87 (3)
Names
“Liberibacter solanacearum”
Abstract
Plant diseases caused by vector-borne pathogens are responsible for tremendous losses and threaten some of the most important agricultural crops. A good example is the citrus greening disease, which is caused by bacteria of the genus Liberibacter and is transmitted by psyllids; it has devastated the citrus industry in the United States, China, and Brazil.

Revealing the Metabolic Flexibility of “ Candidatus Accumulibacter phosphatis” through Redox Cofactor Analysis and Metabolic Network Modeling

Citation
Guedes da Silva et al. (2020). Applied and Environmental Microbiology 86 (24)
Names
“Accumulibacter phosphatis”
Abstract
Here, we demonstrate how microbial storage metabolism can adjust to a wide range of environmental conditions. Such flexibility generates a selective advantage under fluctuating environmental conditions. It can also explain the different observations reported in PAO literature, including the capacity of “ Ca . Accumulibacter phosphatis” to act like glycogen-accumulating organisms (GAOs). These observations stem from slightly different experimental conditions,