Microbiology


Publications
891

Characterization of the first cultured free-living representative of Candidatus Izemoplasma uncovers its unique biology

Citation
Zheng et al. (2021). The ISME Journal 15 (9)
Names
Ca. Izemoplasma
Abstract
AbstractCandidatus Izemoplasma, an intermediate in the reductive evolution from Firmicutes to Mollicutes, was proposed to represent a novel class of free-living wall-less bacteria within the phylum Tenericutes. Unfortunately, the paucity of pure cultures has limited further insights into their physiological and metabolic features as well as ecological roles. Here, we report the first successful isolation of an Izemoplasma representative from the deep-sea methane seep, strain zrk13, using a DNA d

PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti

Citation
Wang et al. (2021). Antibiotics 10 (3)
Names
Ca. Thiosymbion Ca. Thiosymbion oneisti
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-

Production and Excretion of Polyamines To Tolerate High Ammonia, a Case Study on Soil Ammonia-Oxidizing Archaeon “ Candidatus Nitrosocosmicus agrestis”

Citation
Liu et al. (2021). mSystems 6 (1)
Names
Ca. Nitrosocosmicus Ca. Nitrosocosmicus agrestis
Abstract
Ammonia tolerance of AOA is usually much lower than that of the AOB, which makes the AOB rather than AOA a predominant ammonia oxidizer in agricultural soils, contributing to global N 2 O emission. Recently, some AOA species from the genus “ Ca. Nitrosocosmicus” were also found to have high ammonia tolerance.

Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

Citation
Taylor et al. (2021). The ISME Journal 15 (2)
Names
Perseibacter sydneyensis Ts Perseibacter Perseibacteraceae Tethybacter castelli Ts Tethybacter Tethybacteraceae Tethybacterales
Abstract
Abstract The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ

Genome-based reclassification of Amycolatopsis eurytherma as a later heterotypic synonym of Amycolatopsis thermoflava

Citation
Singh et al. (2021). International Journal of Systematic and Evolutionary Microbiology 71 (2)
Names
Amycolatopsis eurytherma Amycolatopsis thermoflava
Abstract
The present study was carried out to clarify the taxonomic assignment of two closely related Amycolatopsis species. Genomic information for 48 type strains was available at the time of conducting this analysis. Our analysis showed that two species, viz. Amycolatopsis eurytherma Kim et al. 2002 and

Genomic Insights of “Candidatus Nitrosocaldaceae” Based on Nine New Metagenome-Assembled Genomes, Including “Candidatus Nitrosothermus” Gen Nov. and Two New Species of “Candidatus Nitrosocaldus”

Citation
Luo et al. (2021). Frontiers in Microbiology 11
Names
Ca. Nitrosocaldaceae “Nitrosocaldales” Ca. Nitrosocaldus Ca. Nitrosothermus
Abstract
“Candidatus Nitrosocaldaceae” are globally distributed in neutral or slightly alkaline hot springs and geothermally heated soils. Despite their essential role in the nitrogen cycle in high-temperature ecosystems, they remain poorly understood because they have never been isolated in pure culture, and very few genomes are available. In the present study, a metagenomics approach was employed to obtain “Ca. Nitrosocaldaceae” metagenomic-assembled genomes (MAGs) from hot spring samples collected fro