General Medicine


Publications
576

Symbionts of the ciliate Euplotes : diversity, patterns and potential as models for bacteria–eukaryote endosymbioses

Citation
Boscaro et al. (2019). Proceedings of the Royal Society B: Biological Sciences 286 (1907)
Names
“Euplotella” “Fujishimia” “Parafinniella” “Anadelfobacter sociabilis” “Bandiella numerosa” “Euplotella sexta” “Finniella dimorpha” “Fujishimia apicalis” “Parafinniella ignota”
Abstract
Endosymbioses between bacteria and eukaryotes are enormously important in ecology and evolution, and as such are intensely studied. Despite this, the range of investigated hosts is narrow in the context of the whole eukaryotic tree of life: most of the information pertains to animal hosts, while most of the diversity is found in unicellular protists. A prominent case study is the ciliate Euplotes , which has repeatedly taken up the bacterium Polyn

Maternal Contribution of Candidatus Liberibacter asiaticus to Asian Citrus Psyllid (Hemiptera: Liviidae) Nymphs Through Oviposition Site Inoculation and Transovarial Transmission

Citation
Kelley, Pelz-Stelinski (2019). Journal of Economic Entomology
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits Candidatus Liberibacter asiaticus (Las), the bacterial pathogen putatively responsible for citrus huanglongbing. Multiple studies have shown psyllids acquire Las more frequently, and are more likely to inoculate susceptible plants, when they acquire Las as nymphs. Understanding the transmission of Las to nymphs is critical to the Las lifecycle. The objective of this study was to determine the

‘Candidatus Liberibacter asiaticus’ and Its Vector, Diaphorina citri, Augment the Tricarboxylic Acid Cycle of Their Host via the γ-Aminobutyric Acid Shunt and Polyamines Pathway

Citation
Nehela, Killiny (2019). Molecular Plant-Microbe Interactions® 32 (4)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB), a destructive citrus disease, is associated with ‘Candidatus Liberibacter asiaticus’, which is transmitted by the Asian citrus psyllid Diaphorina citri. Both ‘Ca. L. asiaticus’ and its vector manipulate the host metabolism for their benefit, to meet their nutritional needs and neutralize the host defense responses. We used a targeted gas chromatography-mass spectrometry–based method to explore the connection between the tricarboxylic acid (TCA) cycle, γ-aminobutyric acid (G