Molecular Biology


Publications
314

Complete Genome Sequence of “Vulcanisaeta moutnovskia” Strain 768-28, a Novel Member of the Hyperthermophilic Crenarchaeal Genus Vulcanisaeta

Citation
Gumerov et al. (2011). Journal of Bacteriology 193 (9)
Names
Ca. Vulcanisaeta moutnovskia
Abstract
ABSTRACT Strain 768-28 was isolated from a hot spring in Kamchatka, Russia, and represents a novel member of the Vulcanisaeta genus. The complete genome sequence of this thermoacidophilic anaerobic crenarchaeon reveals genes for protein and carbohydrate-active enzymes, the Embden-Meyerhof and Entner-Doudoroff pathways for glucose metabolism, the tricarboxylic acid cycle, beta-oxidation of fatty acids, and sulfate reduction.

Complete Genome Sequence of “ Candidatus Puniceispirillum marinum” IMCC1322, a Representative of the SAR116 Clade in the Alphaproteobacteria

Citation
Oh et al. (2010). Journal of Bacteriology 192 (12)
Names
Puniceispirillum marinum Ts Puniceispirillum
Abstract
ABSTRACT The complete genome sequence of “ Candidatus Puniceispirillum marinum” IMCC1322, the first cultured representative of the SAR116 clade in the Alphaproteobacteria , is reported here. The genome contains genes for proteorhodopsin, aerobic-type carbon monoxide dehydrogenase, dimethylsulfoniopropionate demethylase, and C 1 compound metabolism. The genome information proposes the SAR116 group to be

The Genome of the Amoeba Symbiont “ Candidatus Amoebophilus asiaticus” Reveals Common Mechanisms for Host Cell Interaction among Amoeba-Associated Bacteria

Citation
Schmitz-Esser et al. (2010). Journal of Bacteriology 192 (4)
Names
Ca. Amoebophilus asiaticus
Abstract
ABSTRACT Protozoa play host for many intracellular bacteria and are important for the adaptation of pathogenic bacteria to eukaryotic cells. We analyzed the genome sequence of “ Candidatus Amoebophilus asiaticus,” an obligate intracellular amoeba symbiont belonging to the Bacteroidetes . The genome has a size of 1.89 Mbp, encodes 1,557 proteins, and shows massive proliferation of IS elements (24% of all genes), although the g

Characterization of an ATP Translocase Identified in the Destructive Plant Pathogen “ Candidatus Liberibacter asiaticus”

Citation
Vahling et al. (2010). Journal of Bacteriology 192 (3)
Names
Ca. Liberibacter asiaticus
Abstract
ABSTRACT ATP/ADP translocases transport ATP across a lipid bilayer, which is normally impermeable to this molecule due to its size and charge. These transport proteins appear to be unique to mitochondria, plant plastids, and obligate intracellular bacteria. All bacterial ATP/ADP translocases characterized thus far have been found in endosymbionts of protozoa or pathogens of higher-order animals, including humans. A putative ATP/ADP translocase was uncovered during the geno