Ecology, Evolution, Behavior and Systematics


Publications
589

Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato

Citation
Tiénébo et al. (2019). Plants 8 (11)
Names
“Liberibacter solanacearum”
Abstract
Disease caused by the bacterial pathogen “Candidatus Liberibacter solanacearum” (Lso) represents a serious threat to solanaceous crop production. Insecticide applications to control the psyllid vector, Bactericera cockerelli Šulc (Hemiptera: Triozidae) has led to the emergence of resistance in psyllids populations. Efforts to select natural resistant cultivars have been marginally successful and have been complicated by the presence of distinct Lso haplotypes (LsoA, LsoB) differing in symptoms s

Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids

Citation
Patel et al. (2019). Genome Biology and Evolution
Names
“Fukatsuia symbiotica”
Abstract
Abstract Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with re

Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae

Citation
Salcher et al. (2019). The ISME Journal 13 (11)
Names
“Methylopumilus hivernalis” “Methylopumilus profundus” “Methylopumilus” “Methylopumilus planktonicus”
Abstract
Abstract The most abundant aquatic microbes are small in cell and genome size. Genome-streamlining theory predicts gene loss caused by evolutionary selection driven by environmental factors, favouring superior competitors for limiting resources. However, evolutionary histories of such abundant, genome-streamlined microbes remain largely unknown. Here we reconstruct the series of steps in the evolution of some of the most abundant genome-streamlined microbes in freshwaters (“Ca. Me